Lecture 8: Recurrent Neural Networks

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/VE445/index.html

Outline

- Motivation
- Basics of RNN
- Different RNNs
- Application examples
- Training
- LSTM

Motivation

- In traditional NN
 - Assume all inputs and outputs are independent of each other
 - Input and output length are fixed
- But this might be bad for many tasks
 - Predict next word in a sentence
 - "Context": You better know which words came before it
 - Hard/Impossible to choose a fixed context window
 - Output YES if the number of 1s is even, else NO!
 - 1000010101 YES, 100011 NO, ...
 - There can always be a new sample longer than anything seen

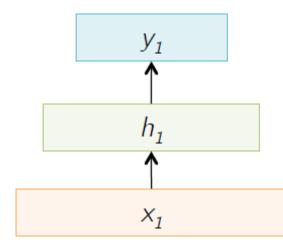
Basics

Recurrent neural networks (RNNs)

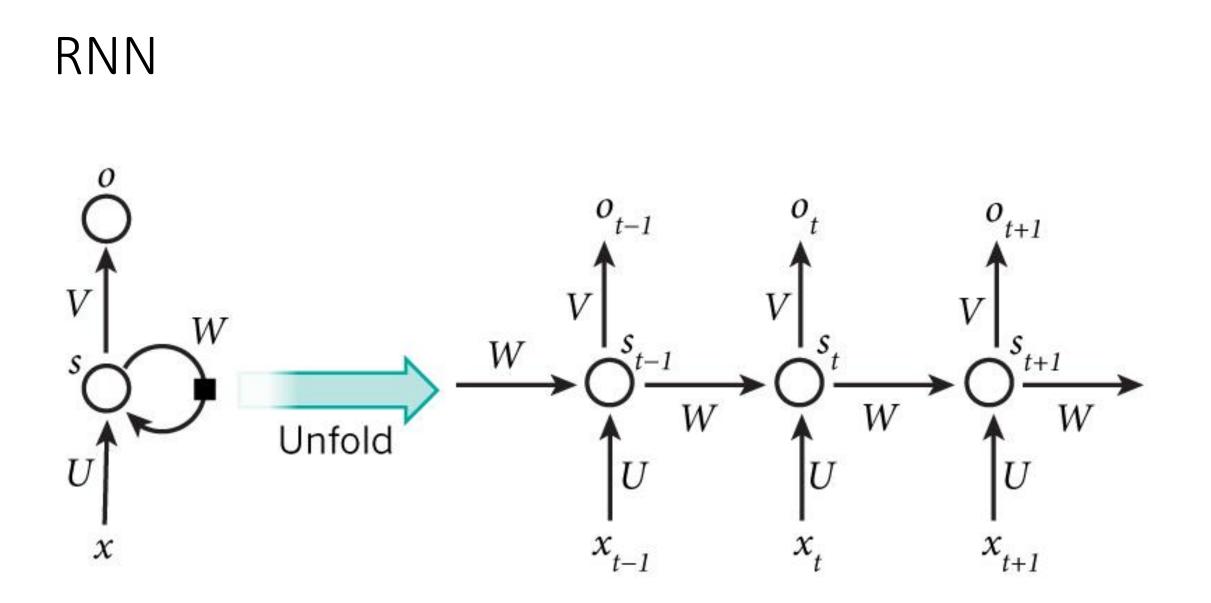
- Recurrent
 - Perform the same task for every element of a sequence, with the output being dependent on the previous computations
- They have a "memory" which captures information about what has been calculated so far

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Feed-forward Network



t = 1

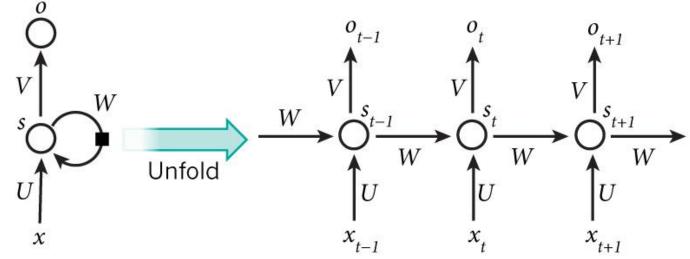


RNN (cont.)

- x_t is the input at time t
- s_t is the hidden state at time t
 - It is the "memory" of the network
 - Is calculated based on previous hidden state and the input at the current step $s_t = f(Ux_t + Ws_{t-1})$

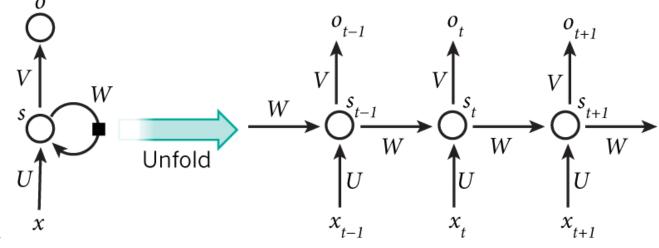
where f is nonlinear activation function, such as tanh, ReLU

- o_t is the output at time t
 - E.g. If we want to predict the next word in a sentence, o_t is a vector of probabilities over certain vocabulary

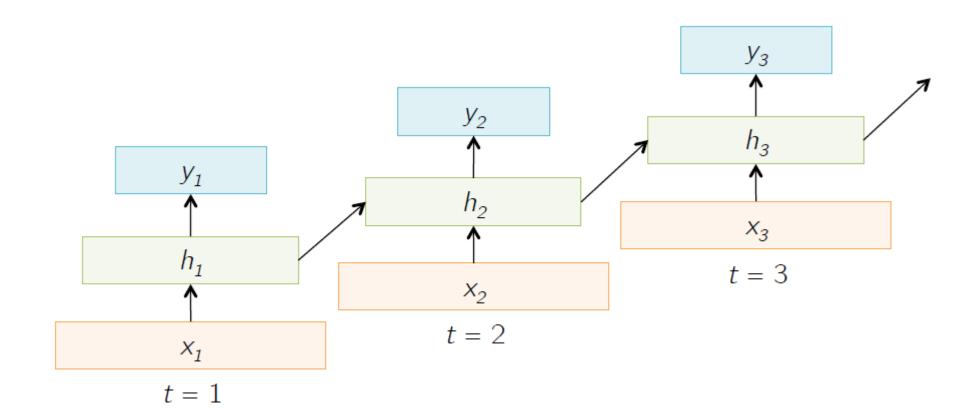


RNN (cont.)

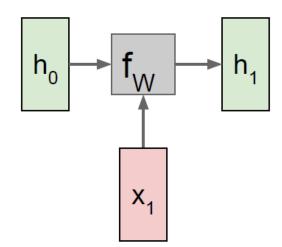
- s_t is the "memory" at time t
- o_t is based on memory at time t
- RNN share weights U and W
 - Unlike traditional NN
 - Greatly reduce the total number of parameters we need to learn
- The output at each time step might be unnecessary
 - E.g. When predicting the sentiment of a sentence we may only care about the final output, not the sentiment after each word
- We may not need inputs at each time step
- Main feature:
 - Is the hidden state, which captures some information about a sequence

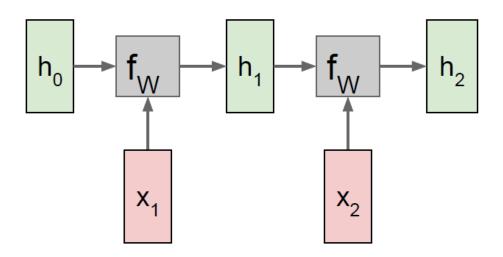


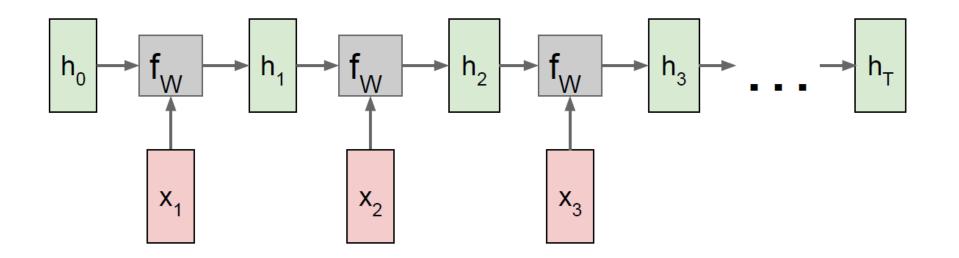
Recall RNN



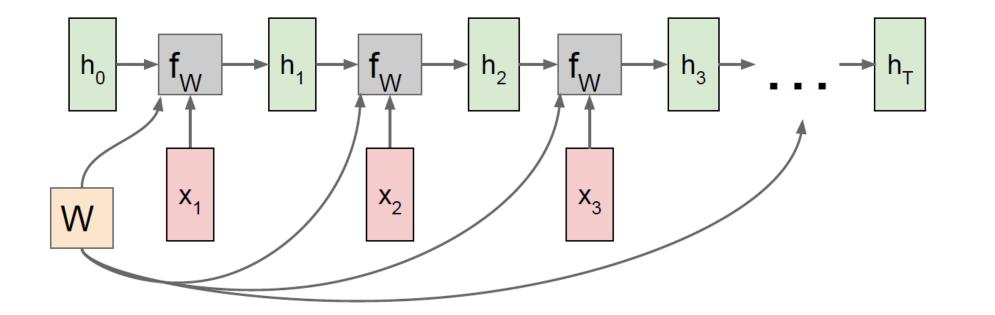
10







• Re-use the same weight matrix at every time-step

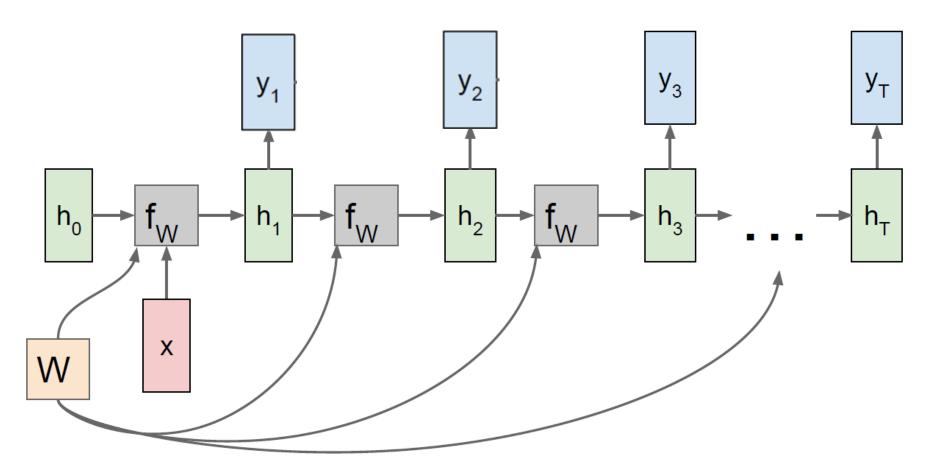


Different RNNs

Different RNNs: one to many

• E.g. Image captioning. Image -> sequence of words

"construction worker in orange safety vest is working on road."

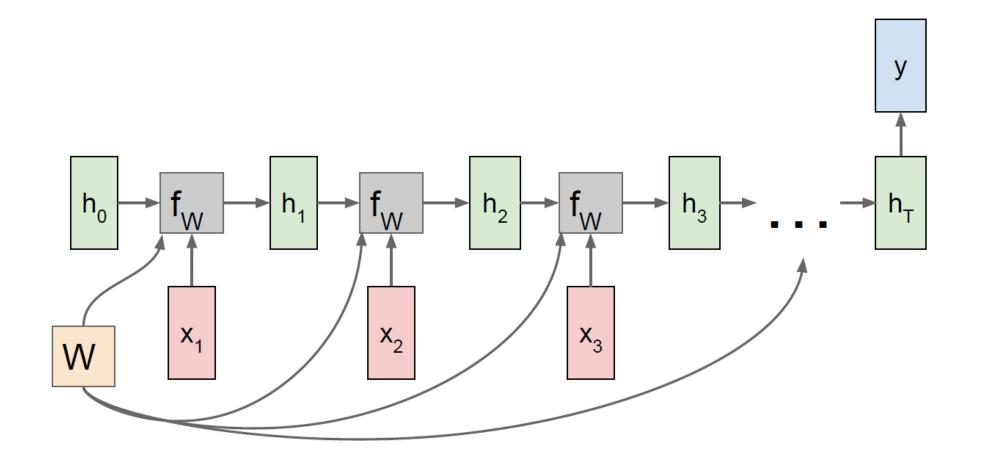


"man in black shirt is

playing guitar."

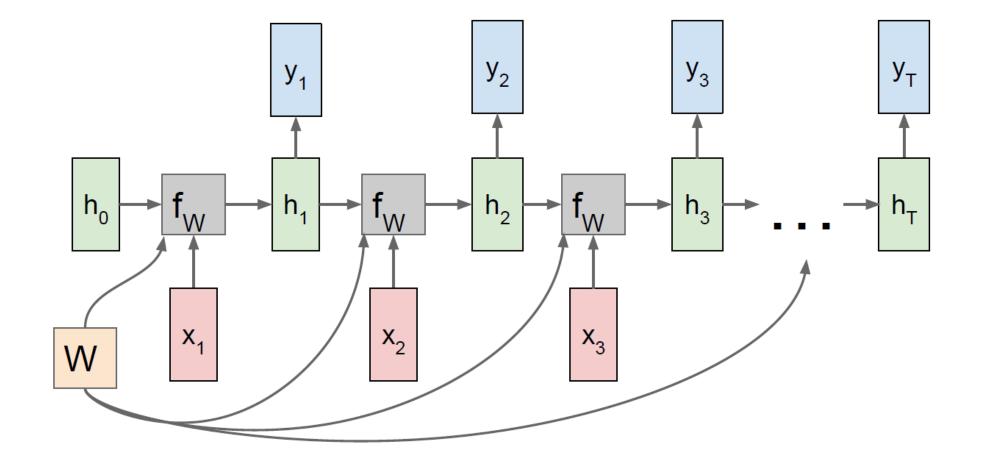
Different RNNs: many to one

• E.g. Sentiment Classification. Sequence of words -> sentiment



Different RNNs: many to many

• E.g. Machine translation. Sequence of words -> sequence of words -> sequence of words



Awesome

•

h₃

W

Xa

W

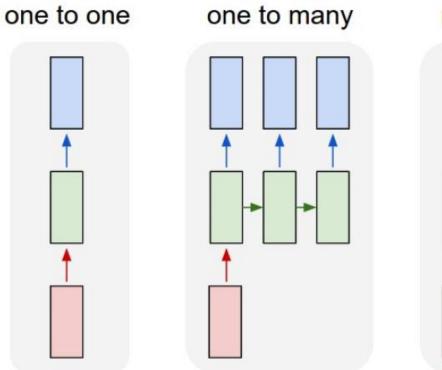
X₁

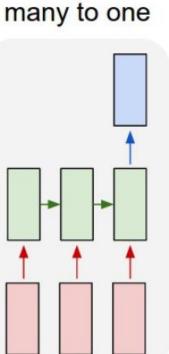
sauce

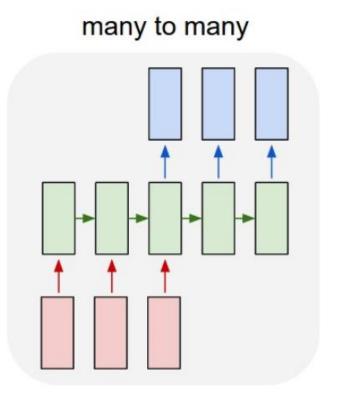
•

•

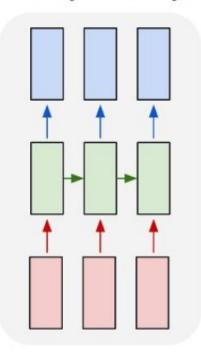
Different RNNs







many to many



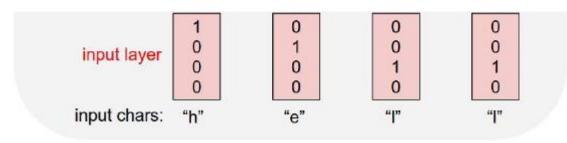
Vanilla NN

Image captioning Text generation

Text classification Sentiment analysis Machine translation Dialogue system Stock price estimation Video frame classification

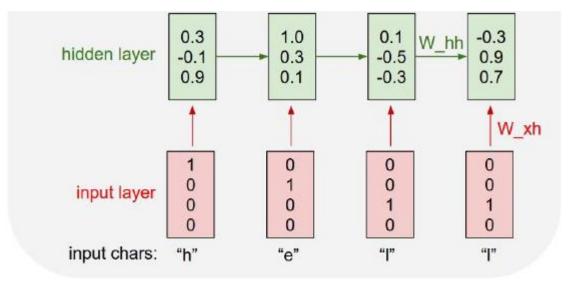
Application Examples

- Given previous words/characters, predict the next
- Vocabulary: [h, e, l, o]
- Example of training sequence: "Hello"



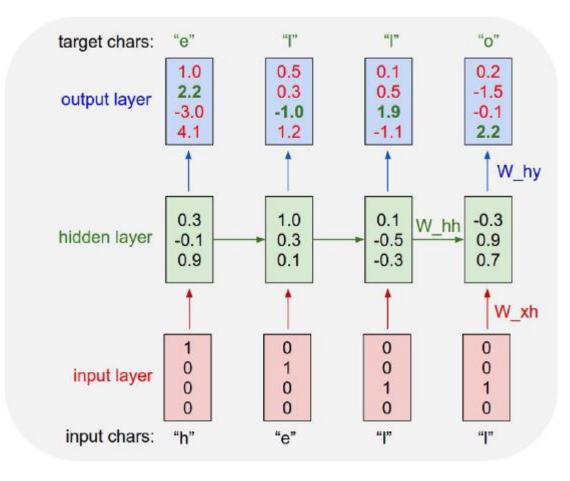
- Given previous words/characters, predict the next
- Vocabulary: [h, e, l, o]
- Example of training sequence: "Hello"

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

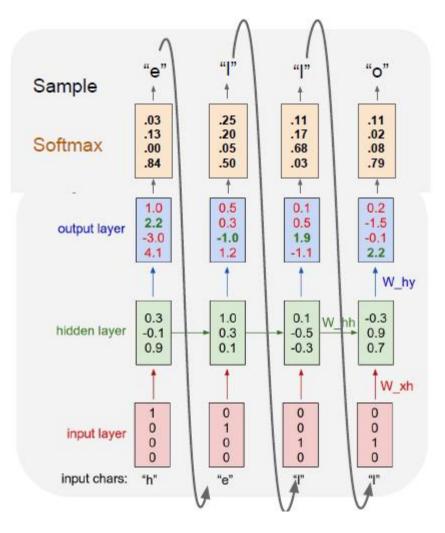


- Given previous words/characters, predict the next
- Vocabulary: [h, e, l, o]
- Example of training sequence: "Hello"

$$egin{aligned} h_t &= anh(W_{hh}h_{t-1} + W_{xh}x_t) \ y_t &= W_{hy}h_t \end{aligned}$$



- Given previous words/characters, predict the next
- Vocabulary: [h, e, l, o]
- Example of training sequence: "Hello"
- At test time, sample characters one at a time, feed back to model



Example 2: Text generating

• Can we generate sonnets like a poet, using RNN?

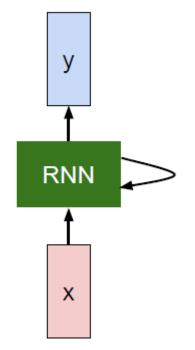
THE SONNETS

by William Shakespeare

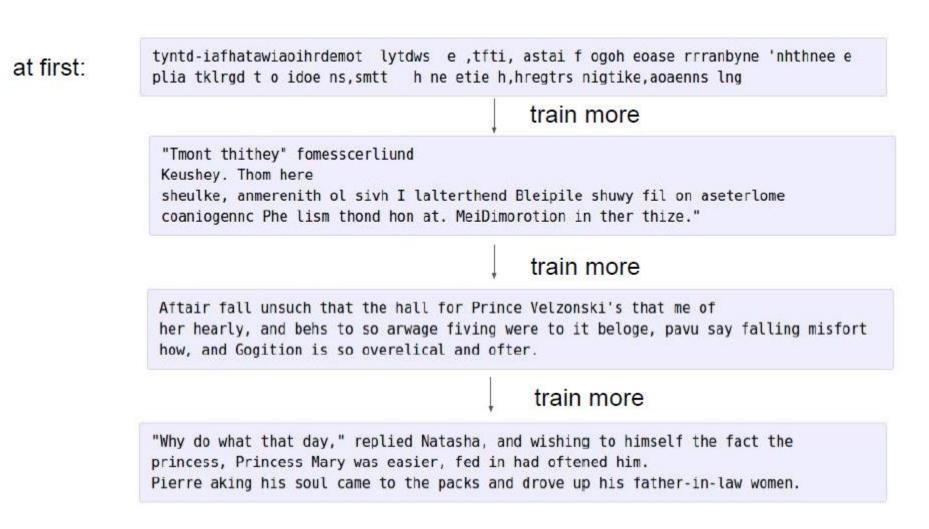
From fairest creatures we desire increase, That thereby beauty's rose might never die, But as the riper should by time decease, His tender heir might bear his memory: But thou, contracted to thine own bright eyes, Feed'st thy light's flame with self-substantial fuel, Making a famine where abundance lies. Thyself thy foe, to thy sweet self too cruel: Thou that art now the world's fresh ornament, And only herald to the gaudy spring, Within thine own hud buriest thy content, And tender churl mak'st waste in niggarding: Pity the world, or else this glutton be, To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow, And dig deep trenches in thy beauty's field, Thy youth's proud livery so gazed on now, Will be a tatter'd weed of small worth held: Then being asked, where all thy beauty lies, Where all the treasure of thy lusty days; To say, within thine own deep sunken eyes, Were an all-eating shame, and thriftless praise. How much more praise deserv'd thy beauty's use, If thou couldst answer 'This fair child of mine Shall sum my count, and make my old excuse,' Proving his beauty by succession thine!

This were to be new made when thou art old, And see thy blood warm when thou feel'st it cold.

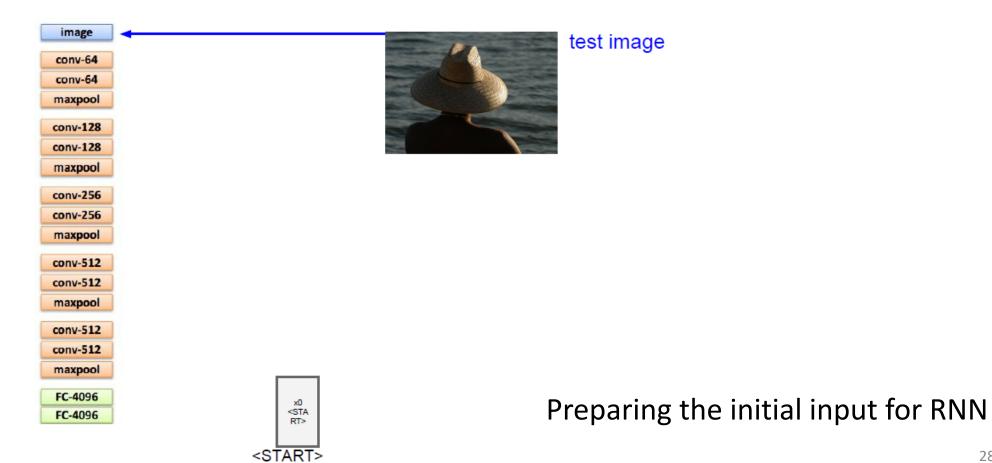


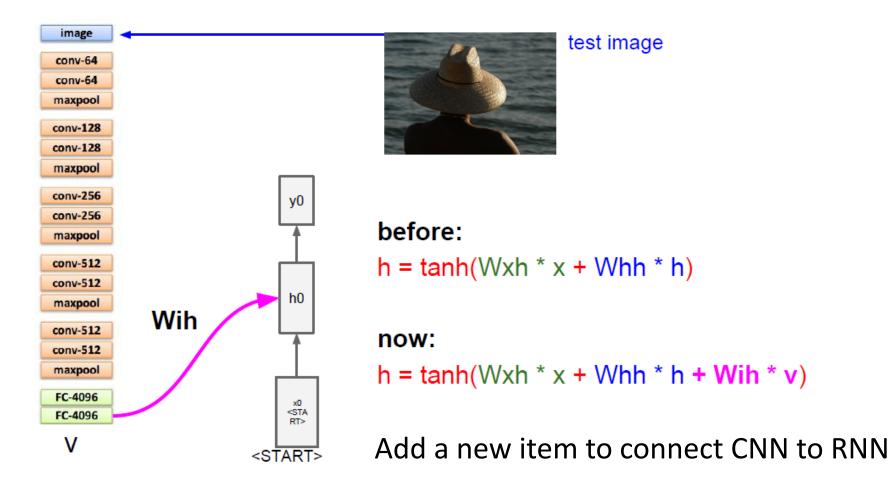
Example 2: Text generating results



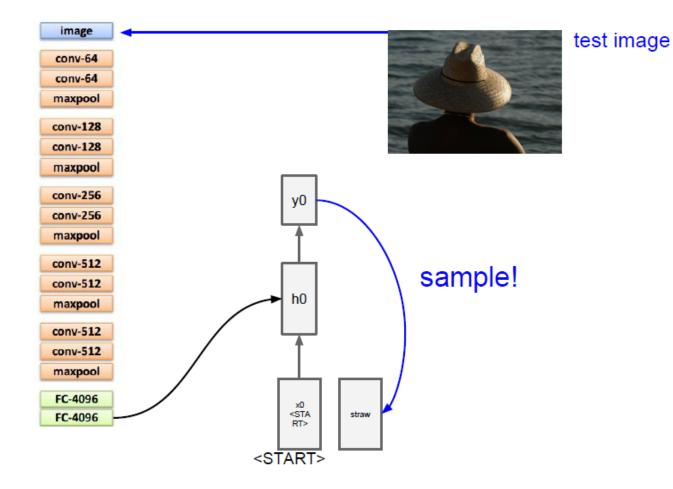
Example 3: Image captioning

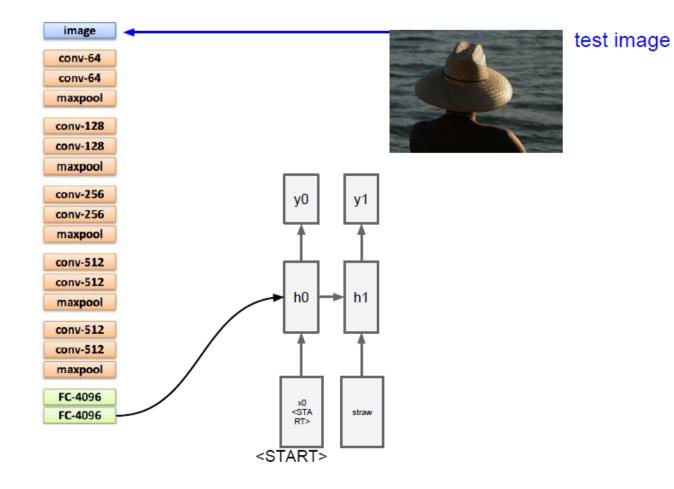
• Using RNN to explain the content in an Image

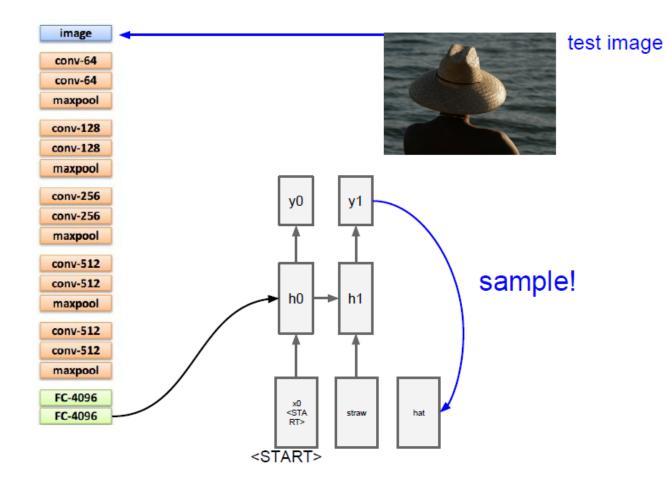


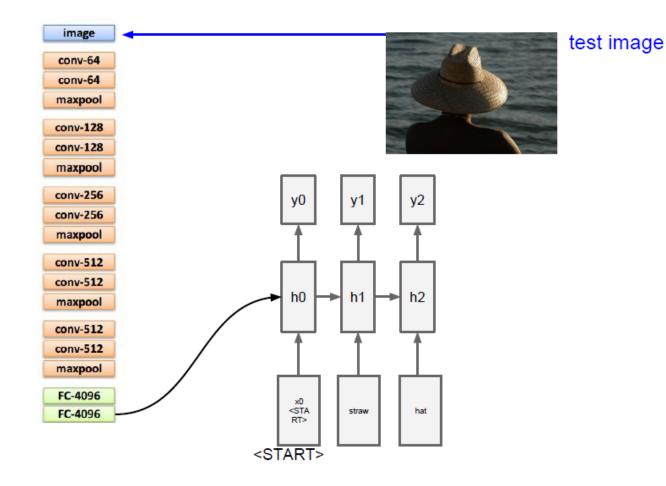


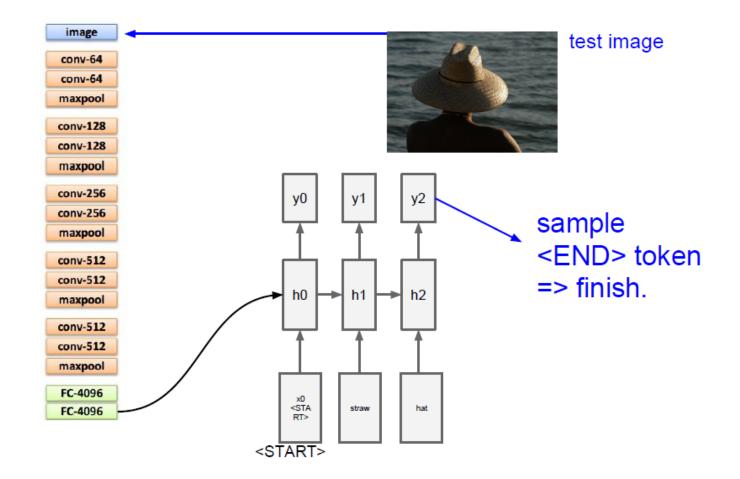
29











Example 3: More results

A cat sitting on a suitcase on the floor

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

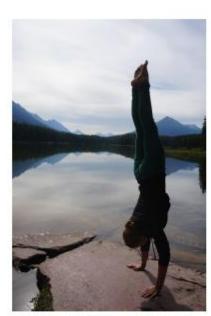
Two giraffes standing in a grassy field

A man riding a dirt bike on a dirt track

Example 3: Failure cases

A woman is holding a cat in her hand

A person holding a computer mouse on a desk



A woman standing on a beach holding a surfboard

A bird is perched on a tree branch

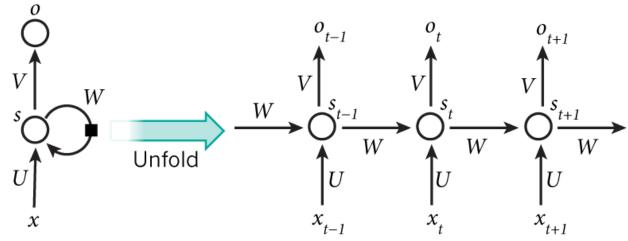
A man in a baseball uniform throwing a ball

Training

Training

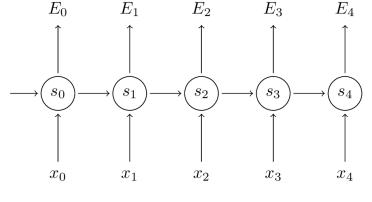
- Still use backpropagation
- But now weights are shared by all time steps
- Backpropagation Through Time (BPTT)
 - E.g., in order to calculate the gradient at t = 4, we would need to backpropagate 3 steps and sum up the gradients
 - $s_t = \tanh(Ux_t + Ws_{t-1})$ $\hat{y}_t = \operatorname{softmax}(Vs_t)$
 - Loss, by cross entropy
 - *y*_t is the correct word at time *t*
 - \hat{y}_t is prediction

38



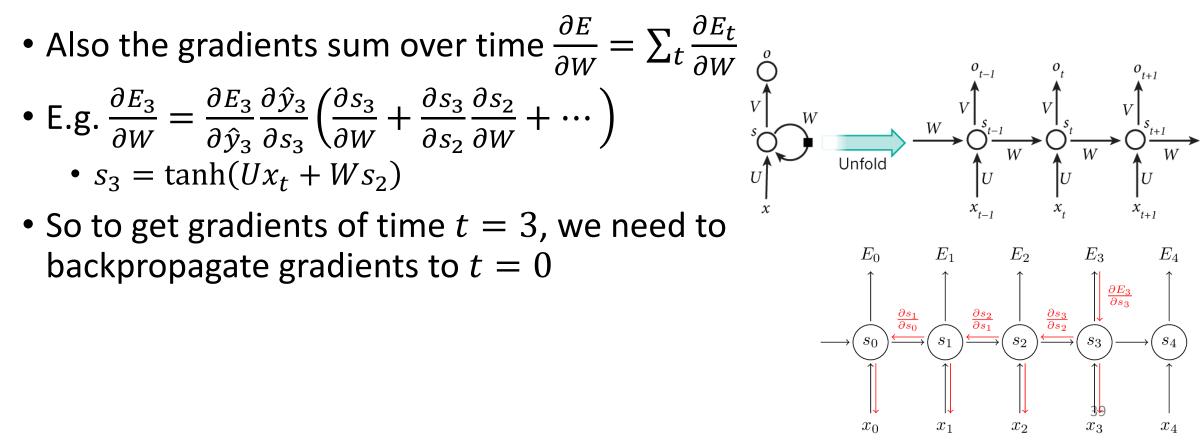
- $E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$
 - $E(y,\hat{y}) = \sum E_t(y_t,\hat{y}_t)$

 $\int y_t \log \hat{y}_t$



Backpropagation Through Time (BPTT)

• Recall that our goal is to calculate the gradients of the error with respect to parameters *U*, *V*, *W*



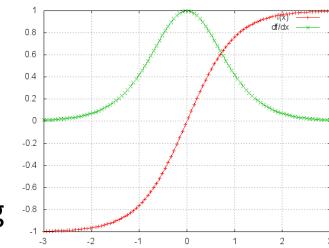
Summary of BPTT

- It is just backpropagation on the unrolled RNN by summing over all gradients for W and U at each time step
- The vanishing gradient problem

•
$$\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \left(\frac{\partial s_3}{\partial W} + \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial W} + \cdots \right)$$

 $\frac{\partial E_3}{\partial W} = \sum_{k=0}^3 \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \left(\prod_{j=k+1}^3 \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_k}{\partial W}$

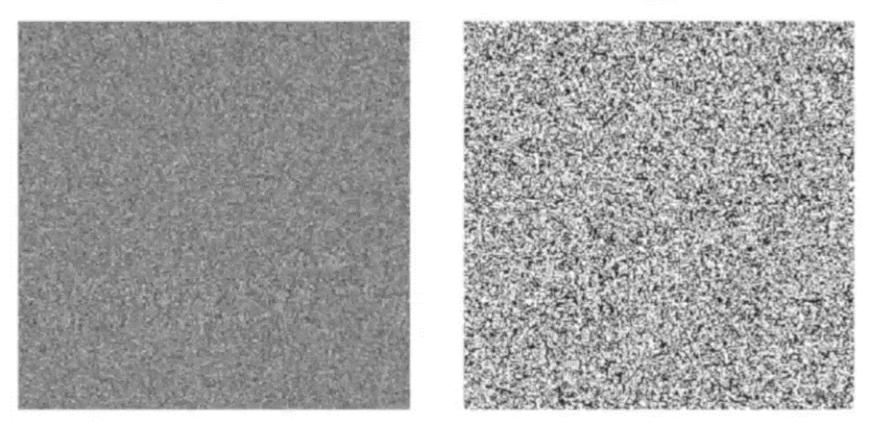
- This Jacobian matrix (derivative w.r.t. a vector) has 2-norm less than 1
 - As an intuition, the derivative of tanh is bounded by 1
- Thus, with small values in multiple matrix multiplications, the gradient values are shrinking exponentially fast, eventually vanishing completely after a few time steps
- Gradient contributions from "far away" steps become zero
- You end up not learning long-range dependencies
- Not exclusive to RNNs. It's just that RNNs tend to be very deep (as sentence length)



Demo of RNN vs LSTM: Vanishing gradients

127

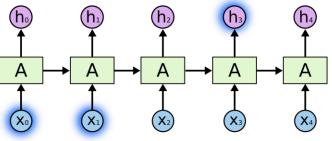
127

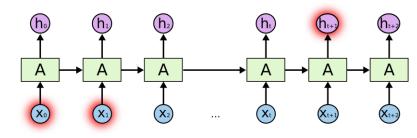


- RNN vs LSTM gradients on the input weight matrix <u>https://imgur.com/gallery/vaNahKE</u>
- Error is generated at 128th step and propagated back. No error from other steps
- Initial weights sampled from Normal Distribution in (-0.1, 0.1)

The problem of long-term dependencies

- One of the appeals of RNNs is the idea that they might be able to connect previous information to the present task, such as using previous video frames might inform the understanding of the present frame
- RNN usually works well for recent information
 - E.g. The clouds are in the *sky*.
- But might work worse for further back context
 - E.g. I grew up in France... I speak fluent French.

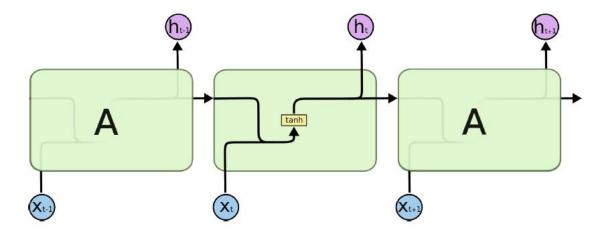




Long Short-Term Memory

Long short-term memory (LSTM)

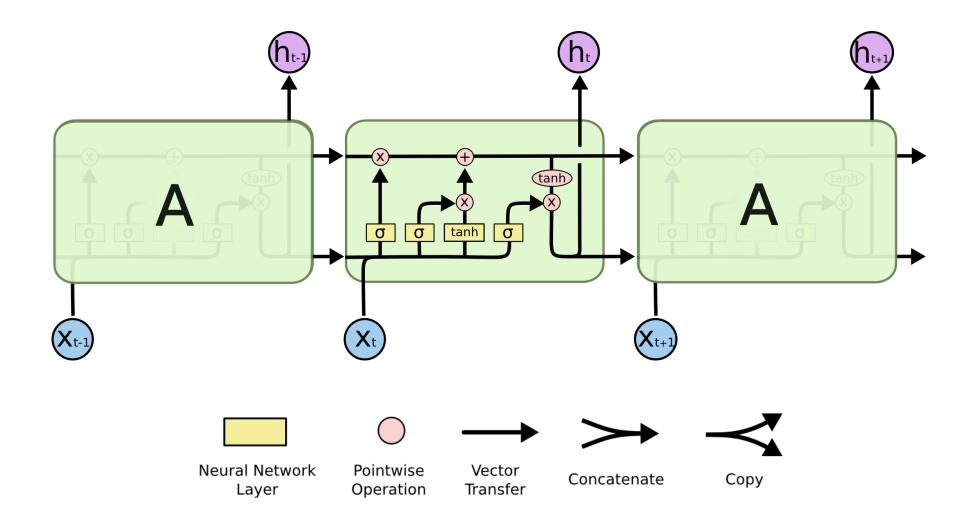
- Hochreiter & Schmidhuber [1997]
- A variant of RNN, capable of learning long-term dependencies
- Can remember information for long periods of time



Remember the architecture of RNN cells, we will make many changes on it

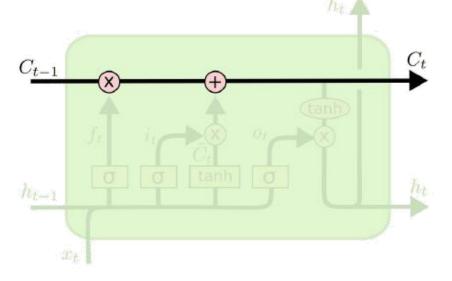
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM at a glance

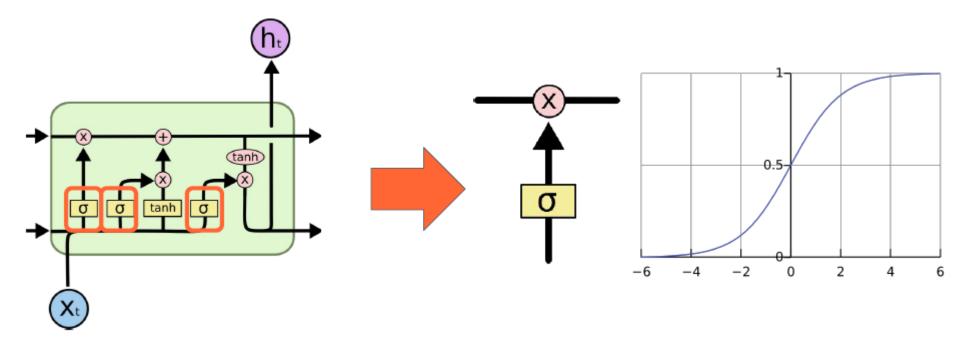


LSTM

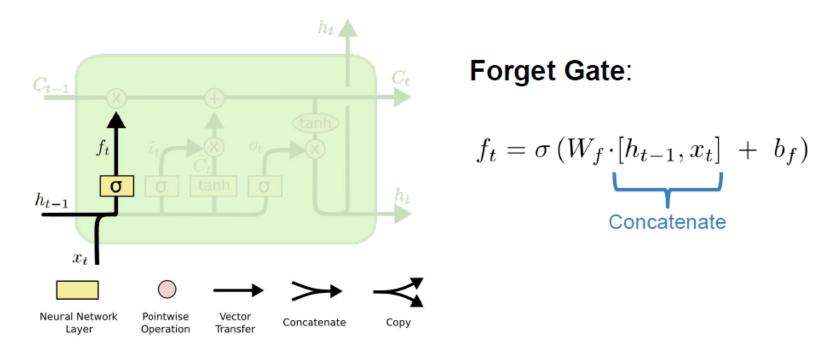
- C_t is the cell state
 - Horizontal line running through the top of the diagram
 - Like a conveyer
 - Run straight down the entire chain, with only some minor linear interactions
 - LSTM uses gates to carefully remove or add information to the cell state



- Three gates are governed by *sigmoid* units
- Describing how much of each component should be let through
- "let nothing through" (zero value)/"let everything through" (one value)

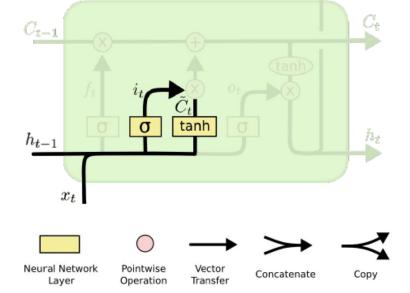


- The first gate is forget gate layer
 - Decide what information we're going to throw away from the cell state
 - Output a number in (0,1) for each number in the cell state
 - 1/0: completely keep/remove this



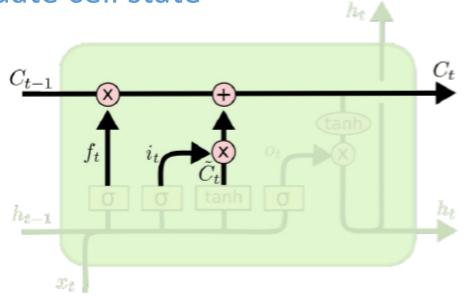
48

- Next is to decide what new information we're going to store in the cell state
 - The sigmoid layer is the input gate layer, deciding which values we'll update



Input Gate Layer $i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$

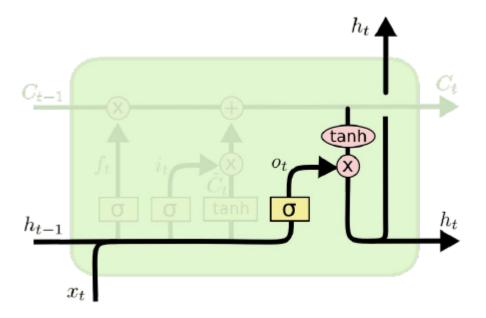
- Multiply the old state by f_t
 - Forgetting the things from previous state
- Add new candidate values
- Update cell state



Update Cell State (memory):

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- Last decide the output h_t
 - Filtered (tanh) version of the cell state
 - The sigmoid layer decides what parts of the cell state we're going to output h_{t-1} , x_t are like *context*



Output Gate Layer

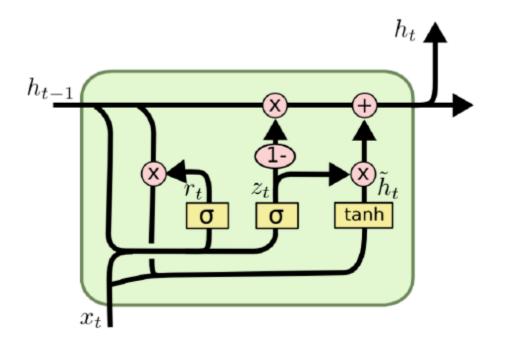
$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

Output to next layer

 $h_t = o_t * \tanh\left(C_t\right)$

Gated recurrent unit (GRU)

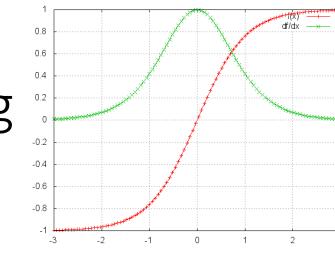
- GRU is a variants of LSTM
 - Combines the forget and input gates into a single "update gate"
 - Also merges the cell state and hidden state

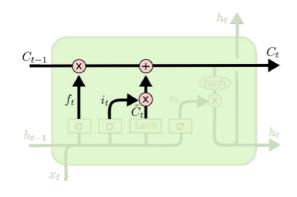


$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

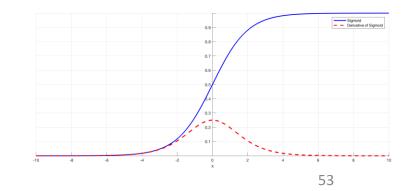
How LSTM avoids gradient vanishing

- **RNN** $\frac{\partial E_3}{\partial W} = \sum_{k=0}^3 \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \left(\prod_{j=k+1}^3 \frac{\partial s_j}{\partial s_{j-1}}\right) \frac{\partial s_k}{\partial W}$
 - $s_j = \tanh(Ux_t + Ws_{j-1})$
 - $\frac{\partial s_j}{\partial s_{j-1}} = \tanh'(\cdot)W$
 - Vanishing since $\prod_{\substack{k'\\j=k+1}}^{k'} \frac{\partial s_j}{\partial s_{j-1}} = (\tanh'(\cdot)W)^{k'-k}$ as k' - k is large
- LSTM
 - $\frac{\partial C_t}{\partial C_{t-1}} = f_t = \sigma(\cdot)$ where the value can be trained around 1 (a large part of σ near 1)
 - Also the sum operation help ease the problem
 - Will also vanish, but much slower than RNN





Update Cell State (memory): $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$



LSTM hyperparameter tuning

- Watch out for *overfitting*
- Regularization helps: regularization methods include L1, L2, and dropout among others.
- The larger the network, the more powerful, but also easier to overfit. Don't want to try to learn a million parameters from 10,000 examples
 - parameters > examples = trouble
- More data is usually better
- Train over multiple epochs (complete passes through the dataset)
- The learning rate is the single most important hyper parameter