
Lecture 8: Recurrent Neural 
Networks

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/VE445/index.html

1

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/VE445/index.html


Outline

• Motivation

• Basics of RNN

• Different RNNs

• Application examples

• Training

• LSTM

2



Motivation

• In traditional NN
• Assume all inputs and outputs are independent of each other

• Input and output length are fixed

• But this might be bad for many tasks
• Predict next word in a sentence

• “Context”: You better know which words came before it

• Hard/Impossible to choose a fixed context window
• Output YES if the number of 1s is even, else NO!

• 1000010101 – YES, 100011 – NO, …

• There can always be a new sample longer than anything seen

3



Basics

4



Recurrent neural networks (RNNs)

• Recurrent
• Perform the same task for every element of a sequence, with the output 

being dependent on the previous computations

• They have a “memory” which captures information about what has 
been calculated so far

5http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/


Feed-forward Network

6



RNN

7



RNN (cont.)

• 𝑥𝑡 is the input at time 𝑡

• 𝑠𝑡 is the hidden state at time 𝑡
• It is the “memory” of the network

• Is calculated based on previous hidden state and the input at the current step
𝑠𝑡 = 𝑓 𝑈𝑥𝑡 +𝑊𝑠𝑡−1

where 𝑓 is nonlinear activation function, such as tanh, ReLU

• 𝑜𝑡 is the output at time 𝑡
• E.g. If we want to predict the next word in a sentence, 𝑜𝑡 is a vector of 

probabilities over certain vocabulary

8



RNN (cont.)

• 𝑠𝑡 is the “memory” at time 𝑡

• 𝑜𝑡 is based on memory at time 𝑡

• RNN share weights 𝑈 and W
• Unlike traditional NN
• Greatly reduce the total number of parameters we need to learn

• The output at each time step might be unnecessary
• E.g. When predicting the sentiment of a sentence we may only care about the 

final output, not the sentiment after each word

• We may not need inputs at each time step

• Main feature: 
• Is the hidden state, which captures some information about a sequence

9



Recall RNN

10



Computational graph of RNN

11



Computational graph of RNN

12



Computational graph of RNN

13



Computational graph of RNN

• Re-use the same weight matrix at every time-step

14



Different RNNs

15



Different RNNs: one to many

• E.g. Image captioning. Image -> sequence of words

16



Different RNNs: many to one

• E.g. Sentiment Classification. Sequence of words -> sentiment

17



• E.g. Machine translation. Sequence of words -> sequence of words

Different RNNs: many to many

18



Different RNNs

19



Application Examples

20



Example 1: Character-level language model

• Given previous words/characters,
predict the next

• Vocabulary: [h, e, l, o]

• Example of training sequence: 

“Hello”

21



Example 1: Character-level language model

• Given previous words/characters,
predict the next

• Vocabulary: [h, e, l, o]

• Example of training sequence: 

“Hello”

22



Example 1: Character-level language model

• Given previous words/characters,
predict the next

• Vocabulary: [h, e, l, o]

• Example of training sequence: 

“Hello”

23



Example 1: Character-level language model

• Given previous words/characters,
predict the next

• Vocabulary: [h, e, l, o]

• Example of training sequence: 

“Hello”

• At test time, sample characters one 
at a time, feed back to model

24



Example 2: Text generating

• Can we generate sonnets like a poet, using RNN?

25



Example 2: Text generating results

26



Example 3: Image captioning

• Using RNN to explain the content in an Image

27

Remove the last two layers in CNN



Example 3: Image captioning (cont.)

28

Preparing the initial input for RNN



Example 3: Image captioning (cont.)

29Add a new item to connect CNN to RNN



Example 3: Image captioning (cont.)

30



Example 3: Image captioning (cont.)

31



Example 3: Image captioning (cont.)

32



Example 3: Image captioning (cont.)

33



Example 3: Image captioning (cont.)

34



Example 3: More results

35



Example 3: Failure cases

36



Training

37



Training

• Still use backpropagation

• But now weights are shared by all time steps

• Backpropagation Through Time (BPTT)
• E.g., in order to calculate the gradient at 𝑡 = 4, we would need to 

backpropagate 3 steps and sum up the gradients

•

• Loss, by cross entropy
• 𝑦𝑡 is the correct word at time 𝑡

• ො𝑦𝑡 is prediction

38



Backpropagation Through Time (BPTT)

• Recall that our goal is to calculate the gradients of the error with 
respect to parameters 𝑈, 𝑉,𝑊

• Also the gradients sum over time 
𝜕𝐸

𝜕𝑊
= σ𝑡

𝜕𝐸𝑡

𝜕𝑊

• E.g. 
𝜕𝐸3

𝜕𝑊
=

𝜕𝐸3

𝜕 ො𝑦3

𝜕 ො𝑦3

𝜕𝑠3

𝜕𝑠3

𝜕𝑊
+

𝜕𝑠3

𝜕𝑠2

𝜕𝑠2

𝜕𝑊
+⋯

• 𝑠3 = tanh 𝑈𝑥𝑡 +𝑊𝑠2

• So to get gradients of time 𝑡 = 3, we need to 
backpropagate gradients to 𝑡 = 0

39



Summary of BPTT

• It is just backpropagation on the unrolled RNN by summing 
over all gradients for 𝑊 and 𝑈 at each time step

• The vanishing gradient problem

•
𝜕𝐸3

𝜕𝑊
=

𝜕𝐸3

𝜕 ො𝑦3

𝜕 ො𝑦3

𝜕𝑠3

𝜕𝑠3

𝜕𝑊
+

𝜕𝑠3

𝜕𝑠2

𝜕𝑠2

𝜕𝑊
+⋯

• This Jacobian matrix (derivative w.r.t. a vector) has 2-norm less than 1
• As an intuition, the derivative of tanh is bounded by 1

• Thus, with small values in multiple matrix multiplications, the gradient values are 
shrinking exponentially fast, eventually vanishing completely after a few time steps

• Gradient contributions from “far away” steps become zero
• You end up not learning long-range dependencies
• Not exclusive to RNNs. It’s just that RNNs tend to be very deep (as sentence length)

40



Demo of RNN vs LSTM: Vanishing gradients

41

• RNN vs LSTM gradients on the input weight matrix https://imgur.com/gallery/vaNahKE

• Error is generated at 128th step and propagated back. No error from other steps 

• Initial weights sampled from Normal Distribution in (-0.1, 0.1)

https://imgur.com/gallery/vaNahKE


The problem of long-term dependencies

• One of the appeals of RNNs is the idea that they might be able to 
connect previous information to the present task, such as using 
previous video frames might inform the understanding of the present 
frame

• RNN usually works well for recent information
• E.g. The clouds are in the sky.

• But might work worse for further back context
• E.g. I grew up in France… I speak fluent French.

42



Long Short-Term Memory

43



Long short-term memory (LSTM)

• Hochreiter & Schmidhuber [1997]

• A variant of RNN, capable of learning long-term dependencies

• Can remember information for long periods of time

44

Remember the architecture of RNN cells, we will make many changes on it

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM at a glance

45



LSTM

• 𝐶𝑡 is the cell state
• Horizontal line running through the top of the diagram

• Like a conveyer

• Run straight down the entire chain, with only some minor linear interactions

• LSTM uses gates to carefully remove or add information to the cell state

46



LSTM (cont.)

• Three gates are governed by sigmoid units 

• Describing how much of each component should be let through

• “let nothing through” (zero value)/“let everything through” (one value)

47



LSTM (cont.)

• The first gate is forget gate layer
• Decide what information we’re going to throw away from the cell state

• Output a number in 0,1 for each number in the cell state

• 1/0: completely keep/remove this

48



LSTM (cont.)

• Next is to decide what new information we’re going to store in the 
cell state
• The sigmoid layer is the input gate layer, deciding which values we’ll update

• The tanh layer creates a vector of new candidate values ሚ𝐶𝑡 that should be 
added to the state

49



LSTM (cont.)

• Multiply the old state by 𝑓𝑡
• Forgetting the things from previous state

• Add new candidate values

• Update cell state

50



LSTM (cont.)

• Last decide the output ℎ𝑡
• Filtered (tanh) version of the cell state

• The sigmoid layer decides what parts of the cell state we’re going to output
ℎ𝑡−1, 𝑥𝑡 are like context

51



Gated recurrent unit (GRU)

• GRU is a variants of LSTM
• Combines the forget and input gates into a single “update gate”

• Also merges the cell state and hidden state

52



How LSTM avoids gradient vanishing
• RNN

• 𝑠𝑗 = tanh 𝑈𝑥𝑡 +𝑊𝑠𝑗−1

•
𝜕𝑠𝑗

𝜕𝑠𝑗−1
= tanh′ ∙ 𝑊

• Vanishing since 

ෑ

𝑗=𝑘+1

𝑘′
𝜕𝑠𝑗
𝜕𝑠𝑗−1

= tanh′ ∙ 𝑊 𝑘′−𝑘

as 𝑘′ − 𝑘 is large

• LSTM

•
𝜕𝐶𝑡

𝜕𝐶𝑡−1
= 𝑓𝑡 = 𝜎 ∙ where the value can be 

trained around 1 (a large part of 𝜎 near 1)

• Also the sum operation help ease the problem

• Will also vanish, but much slower than RNN
53



LSTM hyperparameter tuning

• Watch out for overfitting

• Regularization helps: regularization methods include L1, L2, and 
dropout among others.

• The larger the network, the more powerful, but also easier to overfit. 
Don’t want to try to learn a million parameters from 10,000 examples
• parameters > examples = trouble

• More data is usually better

• Train over multiple epochs (complete passes through the dataset)

• The learning rate is the single most important hyper parameter

54


