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Outline

* Tree models

* Information theory
* Entropy, cross entropy, information gain

e Decision tree

 Continuous labels
e Standard deviation



Tree models

* Tree models
* Intermediate node for splitting data
* Leaf node for label prediction

* Discrete/categorical data example

Predictors Response
Outlook Temperature Humidity Wind  Class

Play=Yes

Play=No
Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No
Overcast Cool Normal Strong  Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong  Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes

Rain Mild High Strong No

Outlook Root Node
Overcast
o . Intermediate
Humidity [ y=1 ] Wind Node
: Leaf
High Normal Node Strong Weak

-0 G




Tree models

* Tree models

* Intermediate node for splitting data
* Leaf node for label prediction

* Discrete/categorical data example

» Key questions for decision trees
* How to select node splitting conditions?
* How to make prediction?
* How to decide the tree structure?



Node splitting

* Which node splitting condition to choose?

Q000000 000000
Q000000 000000
Outlook Temperature
Sunny Overcast "\ Rain Hot Mild Cool
00 0000 X ) O 000
(X ) 000 O C X ) 00 0

* Choose the features with higher classification capacity
* Quantitatively, with higher information gain



Information Theory



Motivating example 1

e Suppose you are a police officer and there was a robbery last night.
There are several suspects and you want to find the criminal from
them by asking some questions.

* You may ask: where are you last night?
* You are not likely to ask: what is your favorite food?

 Why there is a preference for the policeman? Because the first one
can distinguish the guilty from the innocent. It is more informative.



Motivating example 2

e Suppose we have a dataset of two classes of people. Which split is
better?

o 6}
@ © @ o o
o @
o
e o © ©e® ©
o
© o o
© e ©° @ o)
@ o) )
© e e
Male Female Unemployed Employed

* We prefer the right split because there is no outliers and it is more
certain.



Entropy

 How to measure the level of informative (first example) and level of
certainty (second example) in mathematics?

(more specifically, Shannon entropy) is the expected value
(average) of the information contained in each message

e Suppose X is a random variable with n discrete values
P(X =x;) =p;
then the entropy is

HOO = = ) pilog (p)

. 1 1
* Easy to verify H(X) = — Y pilog,(p;) < —X11, ~log, ~ = logn



Illustration

* Entropy for binary distribution

H(X) = —p;log,(p1) — polog, (po) - .

Pr(X =1)



Entropy examples

* What is the entropy of a group in which all examples belong to the
same class?

* Entropy=—11log,1 = 0

Minimum uncertainty
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* What is the entropy of a group with 50% in either class?
* Entropy = —0.5 log,0.5 - 0.5 log,0.5 =1



Cross entropy

* Cross entropy is used to measure the between
two random variable distrib%tions

H(X,Y) = —2 P(X = ) log P(Y = i)
=1

e Continuous version

H(p,q) = - j p(x) log q(x) dx



Recall on logistic regression

* Binary classification
po(y = 1|z) = 0(0'z) =

g—l_

1
1+ e 0z

e I

pe(y = Olz) =
1+ E—QTI . / is also convexin 6
* Cross entropy loss function

L(y,z,pg) = —ylogo(0'z) — (1 —y)log(l — (8 'x))

* Gradient
8£(yt:rap9) _ 1 1
50 = _yg(ﬁTm)J(z)(l —o(z))z — (1 — y)l — g(ﬂTm)g(z)(l —o(z))z
= (0(0"2) —y)z 502) o
6 —0+n(y—o(0T2) 8:; =0(2)(1—0(2)) | Onew < 0w —1;78—((9)




Conditional entropy

* Entropy HX,Y) = =Y P(X = i) logP(Y = 1)
* Specific conditional entropy of X givenY = vy

HX|Y =y) = — ZP(X—lIY y)logP(X =i|Y =y)

* Conditional entropy ofX givenY

H(XlY)—ZP(Y WHX|Y = y)

of X given Y
I(X,Y) = H(X) — H(X|Y)



Example - Huffman code

* In 1952, MIT student David Huffman devised, in the course of doing a
homework assignment, an elegant coding scheme which is in
the case where all symbols’ probabilities are integral powers of 1/2

* A Huffman code can be built in the following manner:
e Rank all symbols in increasing order of probability of occurrence

* Successively combine the two symbols of the lowest probability to form a
new composite symbol; eventually we will build a binary tree where each
node is the probability of all nodes beneath it

* Trace a path to each leaf, noticing direction at each node



Example - Huffman code (cont.)

M code length  prob

,Ir 1I)25 /;\. A 000 3 0.125 0.375
B :125 e 7 B 001 3 0.125 0.375
C 25 ,O[ C 01 2 0250 0.500
D .5 (5) (s) D 1 1 0500 0.500
0 Axl ‘ average message length 1.750
Czs | ‘\-_25) If we use this code to many

0 \ 1 C messages (A,B,C or D) with this

( probability distribution, then, over
'./125= '.12; time, the average bits/message

Ak B should approach 1.75

16



Interpretation from coding perspective

* Usually denotes the minimal average message length of the
coding (theoretically)

 When the probability distribution is composed of %, then the average
length of Hoffman code is the entropy



Decision Tree



Node Splitting

T

H(X|Y =v)=—=) P(X =i]Y =v)log P(X =i|Y =)

=1
* Information gain HX[Y)= Y P =vHX]Y =)
vEvalues(Y)
000000 000000
000000 0000000
Qutlook Temperature
Hot Mild Cool
X X X X X L X @ 0000
C X X X X @ C X ) - X X 0
3 3 2 2 2 2 2 2
HX|Y=58)=—=log=- — -log- =0.9710 HX|Y=H)=—log——-log-=1
(x| ) 5055 5Dg5 7 (X| ) 40g4 40g4
4 4 1 1 3 3
HX|Y=0)=—log-=0 HX|Y=M)=——log— — —log—=0.8113
(X ) 4024 (X] M) 40g4 4og4
H(X|Y =R) = 21og 2 — Liog L —0.7210 H(X|Y =0) = 2 10g 2 — Z10g 2 = 0.0183
T T TR T 5%y T T )T T %8 6 %6
5 4 5 4 4 5
HX|Y)=—x09710+ — x 04+ — x 0.7219 = 0.6046 HXY)=—x14+— x0381134+ — x 0.9183 =0.9111
(X1¥) 14 ’ _'_14 +14 ’ (XI¥) 14 +14 +14

I(X,Y)=H(X)— H(X|Y) =1 — 0.6046 = 0.3954 I(X,Y)=H(X)— H(X|Y) =1—0.9111 = 0.0889



Node splitting

* We want to determine which attribute in a given set of training
feature vectors is for discriminating between the classes
to be learned

* Information gain tells us how important a given attribute of the
feature vectors is

* |s used to decide the ordering of attributes in the nodes of a

of X givenY
I(X,Y)=HX) - HX|Y)



Example

* Given a dataset of 8 students about whether they like the famous

movie Gladiator, calculate the entropy in this dataset

Like

Yes

NO

Yes

NO

NO

Yes

NO

Yes




Example (cont.)

* Given a dataset of 8 students about whether they like the famous

movie Gladiator, calculate the entropy in this dataset

E(Like) = —glog (g) — —glog (3)21

Like

Yes

NO

Yes

NO

NO

Yes

NO

Yes




Example (cont.)

* Suppose we now also know the gender of these
8 students, what is the conditional entropy on
gender?

Gender Like
Male Yes
Female No
Male Yes
Female No
Female No
Male Yes
Male No
Female Yes




Example (cont.)

* Suppose we now also know the gender of these
8 students, what is the conditional entropy on
gender?

e The labels are divided into two small dataset
based on the gender

Like (male) Like(female)
Yes NoO
Yes NO
Yes NoO
NoO Yes

P(Yes | male) = 0.75 P(Yes | female) = 0.25

Gender Like
Male Yes
Female No
Male Yes
Female No
Female No
Male Yes
Male No
Female Yes




Example (cont.)

e Suppose we now also know the gender of these 8 students, what is

the conditional entropy on gender? Gender Like

* P(Yes|male) = 0.75 Male Yes

. ;(\I(‘elzﬂfemzile) = 0.25 Female NoO

( 11elma f) 3 3 Male Yes

= ~3log (Z) ~3log (Z) Female No
= —0.25%*—-2—-0.75%x—-0.41 = 0.81

« H(Like|female) Female No

3 3 1 1

= —3log (3) —3l0g ;) Male | Yes

= —0.75 * —0.41 — 0.25 * —2 = 0.81 Male No

Female Yes




Example (cont.)

e Suppose we now also know the gender of these 8 students, what is

the conditional entropy on gender?

» E(Like|Gender)
= E(Like|male) * P(male)
+E(Like|female) * P(female)
= 0.5%0.81+4+ 0.5 0.81 = 0.81
 I(Like, Gender) = E(Like) — E(Like|Gender)
=1-0.81=0.19

Gender Like
Male Yes
Female No
Male Yes
Female No
Female No
Male Yes
Male No
Female Yes




Example (cont.)

e Suppose we now also know the major of these
8 students, what about the conditional entropy
on major?

Major Like
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes




Example (cont.)

e Suppose we now also know the major of these 8 students, w

about the conditional entropy on major?

* Three datasets are created based on major

Like (math)

Yes

NO

NO

Like(history) Like(cs)
No Yes
No Yes

Yes

P(Yes|math) = 0.5

P(Yes|history) =0

P(Yes|cs) =1

nat
Major Like
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes




Example (cont.)

e Suppose we now also know the major of these 8 students, w

about the new Entropy

« H(Like
H(Like

H(Like
H(Like

Math) = —Elog G) — %log G):l
9~ ~2108(3)~og (I
history) = — % log G) — glog (g):O
Major)

= H(Like|math) X P(math)
+H(Like|History) x P(History)
+H(Like|cs) X P(cs)

=05x1+025x0+0.25x0=0.5

I(Like, Major) = E(Like) — E(Like|Major)

=1-05=0.5

nat
Major Like
Math Yes
History No
CS Yes
Math No
Math No
CS Yes
History No
Math Yes




Example (cont.)

 Compare gender and major

* As we have computed
* I(Like, Gender) = E(Like) —
E(Like|Gender) =1 — 0.81 = 0.19
* I(Like, Major) = E(Like) —
E(Like|Major) =1 — 0.5 = 0.5

is the better feature to predict
the label “like”

Gender | Major Like
Male Math Yes
Female | History No
Male CS Yes
Female Math No
Female Math No
Male CS Yes
Male History No
Female Math Yes




Example (cont.)

is used as the decision condition and it splits the dataset into
three small one based on the answer

Math
History

Gender Like Gender Like Gender Like
Male Yes Female No Male Yes

Female No Male No Female Yes

Female No

Female Yes




Example (cont.)

* The history and CS subset contain only one label, so we only need to
further expand the math subset

Math
History

Gender Like Gender Like Gender Like
Male Yes Female No Male Yes

Female No Male No Female Yes

Female No

Female Yes




Example (cont.)

History

Like

Yes

female

Like Like

Yes Y/N




Example (cont.)

* In the stage of , suppose there come a female students from
the CS department, how can we predict whether she like the movie
Gladiator?

* Based on the major of CS, we will directly predict she like the movie.

 What about a male student and a female student from math department?




Decision tree building: ID3 algorithm

* Algorithm framework
 Start from the root node with all data
* For each node, calculate the information gain of all possible features
* Choose the feature with the highest information gain
 Split the data of the node according to the feature

* Do the above recursively for each leaf node, until
* There is no information gain for the leaf node
* Orthere is no feature to select

* Testing
* Pass the example through the tree to the leaf node for a label



Continuous Labels



Continuous label (regression)

* Previously, we have learned how to build a tree for classification, in
which the labels are values

 The mathematical tool to build a classification tree is entropy in
information theory, which can only be applied in categorical labels

* To build a decision tree for regression (in which the labels are
values), we need new mathematical tools



Regression tree vs Classification tree

* Regression Tree
e Output the predicted

value

Age > 20

Yes \\Io

Gender=Male

Yes No

4.8 4.1

2.8

For example: predict the user’s

rating to a movie

* Classification Tree
e Output the predicted

class
Age > 20
Yes \\Io
Gender=Male dislike
Yes No
like dislike

For example: predict wh
user like a move

ether the



Standard deviation

e Standard deviation could be a solution to regression trees
* https://www.saedsayad.com/decision_tree reg.htm

e Standard deviation is used to calculate the homogeneity of a
numerical sample. If the numerical sample is
its standard deviation is zero

N

1 2

0= NZ(xi — 1)
1=1

39


https://www.saedsayad.com/decision_tree_reg.htm

Standard deviation (cont.)

Third
standard
deviation

0.4

34.1% | 34.1%

13.6% 13.6%

mean
First standard deviation - about 2/3rd of your results/variance will fall into this range.
Second standard deviation - 95% of the time, your results/variance will fall into this range.

Third standard deviation - 99.7% of the time, your results/variance will fall into this range.

40



Standard deviation example

* Count=n =14
* Average = x = 39.8

» Standard deviation o = \/%Z’i\’ﬂ(xi —X)? =9.32

=222 = 239

» Coefficient of variation (CV) = 208

=i Q



Standard deviation example (cont.)
outook | —Hours Played

. . Rainy 26
 With additional outlook label |
Rainy 30
ST X P S Overcast 48
, = c)S(c
( ) Z (€)S(e) Sunny 46
ceX

Sunny 62
Ll Sunny 23

Played Count
(StDev) Overcast 43

Owvercast 3.449 4
Outlook | Rainy 7.78)] 5 Rainy 36
sunny 10.87 5 .
1 Rainy 38
1_ Sunny 48
S(Hours, Outlook) = P{Sunny)*S(Sunny) + P{COvercast)*S(Cvercast) + P{Rainy)*S(Rainy) Rainy 48
= (4/14)*3.49 + (5/14)*7.78 + (5/14)*10.87 Overcast 62
= 7.66

Overcast 44

Sunny 30



Standard deviation reduction

(SDR) is the reduce from the original
standard deviation of the label to the joined standard deviation
between label and feature

SDR(T, X) = S(T) — S(T, X)

* In the example above, the original SD is 9.32, the joined standard
deviation is 7.66

e SotheSDRis9.32 —7.66 = 1.66



Complete example dataset

Outlook Temp  Humidity Windy Hours Played
Rainy Hot High Falce 26
Rainy Hot High True 30
Overcact Hot High Falce 43
Sunny Miia High Falce 45
Sumny Cool Noemal Falce 62
Sunny Cool Normal True 23
Overcact Cool Normal True 47
Rainy Miic High Falce as
Rainy Cool Normal Falce as
Sunny Mila Normal Falce 42
Rainy Milc Normal True Ee]
Overoact Mila High True 82
Overcact Hot Normal Falce 44
Sunny Mila High True 30

44



SDR for different feature

Hours
Played
[StDev)
Owvercast 3.49
Outlook | Rainy 7.78
Sunny 10.87
SDR=1.66
Hours
Played
(StDev)
. High 9.36
Hurmidity
Mormal 8.37
SDR=0.28

Hours
Played
[StDev)
Cool 10.51
Temp. Hot B.95
Mild 7.65
SDR=0.17
Howrs
Played
(StDev)
False 7.87
Windy
True 10.59

SDR=0.29




Largest SDR

* The attribute with the largest standard deviation reduction is chosen

for the decision node

x

Hours

Played

(StDev)
Overcast 3.49
Outlook | Rainy 7.78
Sunny 10.87

SDR=1.66

46



Split the dataset

* The dataset is divided based on the values of the selected attribute.
This process is run recursively on the non-leaf branches, until all data

is processed

Outiook Temp Humidity Windy Hours Played
Sunny Mildd High FALSE 45
y Sunny Cool Normal FALSE 52
T g Sunny Cool Narmal TRUE 23
W Sunny Milt Normal FALSE 45
Sunny Mild High TRUE 30
—
I Overcast Hat High FALSE 45
ik Overcast Cool Norma TRUE 43
| Overcast Mild High TRUE 52
5 Overcast Hot Normal FALSE 44
h
Rainy Hot High FALSE 28
:E- Rainy Hot High TRUE 30
— Rainy Mild High FALSE 38
Q= Rainy Cool Normal FALSE 38
Raimy Mild Marmal TRUE 48

47



Stopping criteria

* The split of the dataset is stopped until the coefficient of variation (CV)
is below defined threshold

* For example, suppose the threshold is 10%, and the CV in overcast
sub-dataset is 8%. Thus it does not need further split

Outlook - Overcast

Hours Hours Hours

Played Played Played Count

(StDev) (AVG) (cv)

Overcast 3.49 46.3 8% 4 . — — .

Outlook | Rainy 7.78 35.2 22% 5 Sunny Overcast Rainy ‘
|

Sunny 10.87 39.2 28% 5 : S——
46.3

48




Outlook - Sunny

Split on outlook=sunny

Hours Played

(StDev) Count
Cool 14.50 2
Temp
Mild 7.32 3

SDR = 10.87(2/3)*14.5 + (3/5)*7.32) = 0.678

Howrs Played
(5tDev) Bl
H 7.50 2
Humidity eh
Normal 12.50 3

SDR = 10.87-{2/3)*7.5 +(3/5)*12.5) =0.370

Temp Humidity  Windy Hours Played
Mhildd High FALSE 45
Cool Mormal FALSE 52
Cool Mormal TRUE 23
Mild Mormal FALSE 46
Ml High TRUE 30
5 =1087
AVG =352
CV =28%

Howrs Played

(StDev) R
False 3.00 3
Windy
True 3.50 2

SDR = 10.87-((3/5)*3.09 + {2/5)*3 5KE .62

49



Split on outlook=rainy

Outlook - Rainy

""E:SEU""I"' Count
Coal 0 1
Temp Hat 2.5 2
Mild 6.5 2

SOR = 7.78 - [[1/5) "0+ {2/5)* 2.5 + [2/5)*6.5)

Hours Played
(StDev) i
s High 4.1 3
W
MNarmal 5.0 2

Temp Humidity Winichy Hours Played
Hot High FALSE 25
Hod High TRUE 30
Mild High FALSE a5
Cool Maormal FALSE a8
Mild Marmmal TRUE 48
S mTTE
AVG =352
CV = 22%

SDR = 7.78 - ([3/5)"4.1 + (2/5)"5.0) = 3.32

Hours Played
(5tDev) R
False 5.6 3
Wi
m True 9.0 2

SDR = 7.78 - [[3/5)*5.6 + (2/5)*9.0) = 0.82




Final result

Temp

Howr

layed

E|EEE|S

L
&|68R |8
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Continuous features

e |f features are continuous, internal nodes can test the value of a

feature against a threshold

Outlook
Sunny Overcast
/ ¥
Humidity Yes

/N

>T75% <=75%

/ N\

No Yes

Rain

T

Wind

/N

> 20 <= 20

/ N

No Yes

52



summary

(SDR)

Decision Tree Features
Discrete Continuous
Labels | Discrete Information Gain (IG) (—
Continuous | Standard Deviation Reduction

F

53



