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Different tasks

• Image classification

• Object detection

• Instance segmentation(mask)

• Keypoint detection



R-cnn

• Inputs: image

• Outputs: Bounding boxes(Bbox) + labels for each object in the image



R-cnn Problem

• Use extra(traditional) algorithm to propose Bbox
• Can’t learn and may generate bad proposal Bboxes

• Time-consuming
• Selective search

• Cnn for each Bbox



Fast Rcnn

• Feature proposal on feature map
• Use RoI pooling

• Use softmax to classify

• Still use selective search



Fast Rcnn

● RoI pooling
● divide the h x w RoI as H x W sub-windows

● max-pool each sub-window to get H x W map to represent the ROI. (The max-
pool kernel is [h/H], [w/W] respectively).

● RoI Align
● the value of the four regularly sampled locations are computed directly 

through bilinear interpolation



Faster Rcnn

• Use network to propose
• Reuse the feature map



Faster Rcnn: RPN

Feature map
(batch,h,w,d)

Shared conv base
(batch,h,w,d’)

(3*3),anchor_stride,512 for VGG

(batch,h,w,2k)

(batch,anchors,2)

(batch,h,w,4k)

(batch,anchors,4)



Faster Rcnn: RPN

• Label
• Intersection over Union(IoU)

• positive
i. the anchor/anchors with the highest IoU overlapwithaground-truthbox

ii. an anchor that has an IoU overlap higher than 0.7 with any ground-truth box

• negative
• an anchor that has an IoU overlap lower than 0.3 with all ground-truth box

• Test
• Non-maximum-suppression based on cls scores



Faster R-cnn: training

• Step1:(model1)
• Train RPN network initialized by imageNet-pre-trained model weights

• Step2:(model2)
• Train fast rcnn(initialized by imageNet-pre-trained model) with RPN 

network(model1)

• Step3:(model3)
• Fine-tune RPN with fixed cnn initialized by model2’s cnn weights

• Step4:
• Fine-tune model2 with model3’s region proposals and fix cnn weights



Faster R-cnn



Mask R-Cnn

• Extending Faster R-CNN for 
Pixel Level Segmentation

• Use RoI Align



FPN(feature pyramid network)



You Only Look Once

• Pro
• Simple and fast

• Con:
• Lower accuracy than

state-of-the art

• Difficult to detect
the small object
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