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Different tasks

* Image classification
* Object detection
* Instance segmentation(mask)

* Keypoint detection
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R-chn

* Inputs: image
* Outputs: Bounding boxes(Bbox) + labels for each object in the image

R-CNN: Regtons with CNN features

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions




R-cnn Problem

* Use extra(traditional) algorithm to propose Bbox

e Can’t learn and may generate bad proposal Bboxes

* Time-consuming
e Selective search
 Cnn for each Bbox
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Fast Rcnn

* Feature proposal on feature map
* Use Rol pooling
* Use softmax to classify
* Still use selective search
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Fast Rcnn

. Rol pooling
. divide the h x w Rol as H x W sub-windows

. max-pool each sub-window to get H x W map to represent the ROI. (The max-
pool kernel is [h/H], [W/W] respectively).

. Rol Align
. the value of the four regularly sampled locations are computed directly
through bilinear interpolation Proposals

Feature maps
Size=(M/16)x(N/16)

Fixed-length 7x7 representation



Faster Rcnn

e Use network to propose
* Reuse the feature map

classifier

¥ Rol pooling
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Faster Rcnn: RPN

(batch,anchors,?2) (batch,anchors,4)
(batch,h,w,2Kk) (batch,h,w,4k)

Shared conv base

| 2k scores | [ 4k coordinates | - k anchor boxes t h h ,
W,
cls layer \ I reg layer . (ba C 5 ; ;d)
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256-d
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Faster Rcnn: RPN

e Label

* Intersection over Union(loU)
* positive

i.  the anchor/anchors with the highest loU overlapwithaground-truthbox

ii. an anchor that has an loU overlap higher than 0.7 with any ground-truth box
* negative

e an anchor that has an loU overlap lower than 0.3 with all ground-truth box

* Test
* Non-maximum-suppression based on cls scores



Faster R-cnn: training

* Stepl:(modell)
* Train RPN network initialized by imageNet-pre-trained model weights

 Step2:(model2)

* Train fast rcnn(initialized by imageNet-pre-trained model) with RPN
network(modell)

* Step3:(model3)

* Fine-tune RPN with fixed cnn initialized by model2’s cnn weights

* Step4:

* Fine-tune model2 with model3’s region proposals and fix cnn weights



Faster R-chn
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Mask R-Cnn

* Extending Faster R-CNN for
Pixel Level Segmentation

* Use Rol Align

classifier
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FPN(feature pyramid network)

———

roi_align_classifier: PyramidROIAlign

input:

[(None, 200, 4), (None, 256, 256, 256), (None, 128, 128, 256), (None, 64, 64, 256), (None, 32, 32, 256)]

output:

(None, 200, 7, 7, 256)




You Only Look Once
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e Simple and fast

* Con:

* Lower accuracy than
state-of-the art

 Difficult to detect
the small object

Final detections

Class probability map
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