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Exam code

• Exam on Dec 6, 8:00-9:40 at Dong Xia Yuan 102 (lecture classroom)

• Finish the exam paper by yourself

• Allowed:
• Calculator

• Not allowed:
• Books, materials, cheat sheet, …

• Phones, any smart device

• No entering after 8:25

• Early submission period: 8:30--9:25
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Coverage of final

• Basics

• Supervised learning
• Regression 

• SVM and Kernel methods

• Decision Tree

• Deep learning
• Neural Networks

• Backpropagation

• Convolutional Neural Network

• Recurrent Neural Network

• Unsupervised learning
• K-means, Agglomerative clustering, 

BFR, CURE

• PCA, SVD, Autoencoder, Feature 
selection

• EM, GMM

• HMM

• Learning theory
• Bias-variance decomposition
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Exam contents 

• 4 questions 
• 3 with 30 marks

• Computation tasks

• Concept understanding

• 1 with 10 marks
• Algorithm description
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Supervised Learning
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Machine Learning Categories

• Unsupervised learning
• No labeled data

• Supervised learning
• Use labeled data to predict on unseen points

• Semi-supervised learning
• Use labeled data and unlabeled data to predict on unlabeled/unseen points

• Reinforcement learning
• Sequential prediction and receiving feedbacks
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Supervised learning example
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Regression example
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Model Evaluations
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Classification -- Model evaluations

• Confusion Matrix
• TP – True Positive ; FP – False Positive 

• FN – False Negative; TN – True Negative

Predicted Class

Actual

Class

Class = Yes Class = No

Class = Yes a (TP) b (FN)

Class = No c (FP) d (TN)

FNFPTNTP

TNTP

dcba

da

+++

+
=

+++

+
= Accuracy
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Classification -- Model evaluations

• Limitation of Accuracy
• Consider a 2-class problem

• Number of Class 0 examples = 9990

• Number of Class 1 examples = 10

• If a “stupid” model predicts everything to be class 0, accuracy is 9990/10000 = 
99.9 %

• The accuracy is misleading because the model does not detect any 
example in class 1
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Classification -- Model evaluations

• Cost-sensitive measures

cba

a

pr

rp

ba
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FNTP

TP

ca
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FPTP

TP
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22
(F) measure-F

(r) Recall

 (p) Precision

Harmonic mean of Precision and Recall 
(Why not just average?)

Predicted Class

Actual

Class

Class = Yes Class = No

Class = Yes a (TP) b (FN)

Class = No c (FP) d (TN)
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Example

• Given 30 human photographs, a computer predicts 19 to be male, 11 
to be female. Among the 19 male predictions, 3 predictions are not 
correct. Among the 11 female predictions, 1 prediction is not correct.

Predicted Class

Actual

Class

Male Female

Male a = TP = 16 b = FN = 1

Female c = FP = 3 d = TN = 10
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Example

• Accuracy = (16 + 10) / (16 + 3 + 1 + 10) = 0.867

• Precision = 16 / (16 + 3) = 0.842

• Recall = 16 / (16 + 1) = 0.941

• F-measure  = 2 (0.842)(0.941) / (0.842 + 0.941) 

= 0.889

Predicted Class

Actual

Class

Male Female

Male a = TP = 16 b = FN = 1

Female c = FP = 3 d = TN = 10
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Decision Tree
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Tree models

• Tree models
• Intermediate node for splitting data

• Leaf node for label prediction

• Discrete/categorical data example
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Tree models

• Tree models
• Intermediate node for splitting data

• Leaf node for label prediction

• Discrete/categorical data example

• Key questions for decision trees
• How to select node splitting conditions?

• How to make prediction?

• How to decide the tree structure?
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Node splitting

• Which node splitting condition to choose?

• Choose the features with higher classification capacity
• Quantitatively, with higher information gain
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Information Theory
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Motivating example 1

• Suppose you are a police officer and there was a robbery last night. 
There are several suspects and you want to find the criminal from 
them by asking some questions.

• You may ask:  where are you last night?

• You are not likely to ask: what is your favorite food?

• Why there is a preference for the policeman? Because the first one 
can distinguish the guilty from the innocent. It is more informative.
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Motivating example 2

• Suppose we have a dataset of two classes of people. Which split is 
better?

• We prefer the right split because there is no outliers and it is more 
certain.
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Entropy

• How to measure the level of informative (first example) and level of 
certainty (second example) in mathematics?

• Entropy (more specifically, Shannon entropy) is the expected value 
(average) of the information contained in each message

• Suppose 𝑋 is a random variable with 𝑛 discrete values
𝑃 𝑋 = 𝑥𝑖 = 𝑝𝑖

then the entropy is

𝐻 𝑋 = −෍

𝑖=1

𝑛

𝑝𝑖log2 𝑝𝑖

• Easy to verify 𝐻 𝑋 = −σ𝑖=1
𝑛 𝑝𝑖log2 𝑝𝑖 ≤ −σ𝑖=1

𝑛 1

𝑛
log2

1

𝑛
= log 𝑛
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Illustration

• Entropy for binary distribution

𝐻 𝑋 = −𝑝1 log2 𝑝1 − 𝑝0log2 𝑝0
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Entropy examples

• What is the entropy of a group in which all examples belong to the 
same class?
• Entropy = − 1 log21 = 0

• What is the entropy of a group with 50% in either class?
• Entropy = −0.5 log20.5 – 0.5 log20.5 = 1

25
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Conditional entropy

• Specific conditional entropy of 𝑋 given 𝑌 = 𝑦

𝐻 𝑋|𝑌 = 𝑦 = −෍

𝑖=1

𝑛

𝑃 𝑋 = 𝑖|𝑌 = 𝑦 log 𝑃 𝑋 = 𝑖|𝑌 = 𝑦

• Conditional entropy of 𝑋 given 𝑌

𝐻 𝑋 𝑌 =෍

𝑦

𝑃(𝑌 = 𝑦)𝐻 𝑋|𝑌 = 𝑦

• Information gain of 𝑋 given 𝑌
𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)
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Interpretation from coding perspective

• Usually entropy denotes the minimal average message length of the 
best coding (theoretically)

• When the probability distribution is composed of 
1

2𝑖
, then the average 

length of Hoffman code is the entropy
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Decision Tree
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Node splitting

• We want to determine which attribute in a given set of training 
feature vectors is most useful for discriminating between the classes 
to be learned

• Information gain tells us how important a given attribute of the 
feature vectors is
• Is used to decide the ordering of attributes in the nodes of a decision tree

• Information gain of 𝑋 given 𝑌
𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)
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Example

• Given a dataset of 8 students about whether they like the famous 
movie Gladiator, calculate the entropy in this dataset
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Like

Yes

No

Yes
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Example (cont.)

• Given a dataset of 8 students about whether they like the famous 
movie Gladiator, calculate the entropy in this dataset
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𝐸 𝐿𝑖𝑘𝑒 = −
4

8
log

4

8
−−

4

8
log

4

8
=1

Like

Yes

No

Yes

No

No

Yes

No

Yes



Example (cont.)

• Suppose we now also know the gender of these 
8 students, what is the conditional entropy on 
gender?

33

Gender Like

Male Yes

Female No

Male Yes

Female No

Female No

Male Yes

Male No

Female Yes



Example (cont.)

• Suppose we now also know the gender of these 
8 students, what is the conditional entropy on 
gender?

• The labels are divided into two small dataset 
based on the gender

34P(Yes | male) = 0.75 P(Yes | female) = 0.25

Gender Like

Male Yes

Female No

Male Yes

Female No

Female No

Male Yes

Male No

Female Yes

Like (male)

Yes

Yes

Yes

No

Like(female)

No

No

No

Yes



Example (cont.)

• Suppose we now also know the gender of these 8 students, what is 
the conditional entropy on gender?
• P(Yes|male) = 0.75

• P(Yes|female) = 0.25

• H Like|male

= −
1

4
𝑙𝑜𝑔

1

4
−

3

4
𝑙𝑜𝑔

3

4
= −0.25 ∗ −2 − 0.75 ∗ −0.41 = 0.81

• H Like|female

= −
3

4
𝑙𝑜𝑔

3

4
−

1

4
𝑙𝑜𝑔

1

4
= −0.75 ∗ −0.41 − 0.25 ∗ −2 = 0.81
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Gender Like

Male Yes

Female No

Male Yes

Female No

Female No

Male Yes

Male No

Female Yes



Example (cont.)

• Suppose we now also know the gender of these 8 students, what is 
the conditional entropy on gender?
• E Like|Gender
= 𝐸 𝐿𝑖𝑘𝑒 𝑚𝑎𝑙𝑒 ∗ 𝑃 𝑚𝑎𝑙𝑒
+𝐸 𝐿𝑖𝑘𝑒 𝑓𝑒𝑚𝑎𝑙𝑒 ∗ 𝑃 𝑓𝑒𝑚𝑎𝑙𝑒

= 0.5 ∗ 0.81 + 0.5 ∗ 0.81 = 0.81

• I Like, Gender = E Like − E Like Gender
= 1 − 0.81 = 0.19
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Gender Like

Male Yes

Female No

Male Yes

Female No

Female No

Male Yes

Male No

Female Yes



Example (cont.)

• Suppose we now also know the major of these 
8 students, what about the conditional entropy 
on major?
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Major Like

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

History No

Math Yes



Example (cont.)

• Suppose we now also know the major of these 8 students, what 
about the conditional entropy on major?

• Three datasets are created based on major

38

Major Like

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

History No

Math Yes
P(Yes|history) = 0 P(Yes|cs) = 1P(Yes|math) = 0.5

Like (math)

Yes

No

No

Yes

Like(history)

No

No

Like(cs)

Yes

Yes



Example (cont.)

• Suppose we now also know the major of these 8 students, what 
about the new Entropy

• H Like|Math = −
2

4
log

2

4
−

2

4
log

2

4
=1

• H Like|CS = −
2

2
log

2

2
−

0

2
log

0

2
=0

• H Like|history = −
2

2
log

2

2
−

0

2
log

0

2
=0

• H Like|Major
= H Like math × 𝑃 𝑚𝑎𝑡ℎ

+H Like History × 𝑃 𝐻𝑖𝑠𝑡𝑜𝑟𝑦
+H Like cs × 𝑃 𝑐𝑠

= 0.5 ∗ 1 + 0.25 ∗ 0 + 0.25 ∗ 0 = 0.5

• I Like,Major = E Like − E Like Major
= 1 − 0.5 = 0.5 39

Major Like

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

History No

Math Yes



Example (cont.)

• Compare gender and major

• As we have computed
• I(Like, Gender) = E Like −
E Like Gender = 1 − 0.81 = 0.19

• I(Like,Major) = E Like −
E Like Major = 1 − 0.5 = 0.5

• Major is the better feature to predict 
the label “like”
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Gender Major Like

Male Math Yes

Female History No

Male CS Yes

Female Math No

Female Math No

Male CS Yes

Male History No

Female Math Yes



Example (cont.)

• Major is used as the decision condition and it splits the dataset into 
three small one based on the answer 
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Gender Like

Male Yes

Female No

Female No

Female Yes

Gender Like

Female No

Male No

Major?

Math CS

Gender Like

Male Yes

Female Yes

History



Example (cont.)

• The history and CS subset contain only one label, so we only need to 
further expand the math subset
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Gender Like

Male Yes

Female No

Female No

Female Yes

Gender Like

Female No

Male No

Major?

Math CS

Gender Like

Male Yes

Female Yes

History



Example (cont.)
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Major?

Math CSHistory

Like

Yes

Like

No

Gender?

female

Like

Y/N

Like

Yes

male



Example (cont.)

• In the stage of testing, suppose there come a female students from 
the CS department, how can we predict whether she like the movie 
Gladiator?
• Based on the major of CS, we will directly predict she like the movie.

• What about a male student and a female student from math department?
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Decision tree building: ID3 algorithm

• Algorithm framework
• Start from the root node with all data

• For each node, calculate the information gain of all possible features

• Choose the feature with the highest information gain

• Split the data of the node according to the feature

• Do the above recursively for each leaf node, until
• There is no information gain for the leaf node

• Or there is no feature to select

• Testing
• Pass the example through the tree to the leaf node for a label
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Unsupervised Learning
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Machine learning categories

• Unsupervised learning
• No labeled data

• Supervised learning
• Use labeled data to predict on unseen points

• Semi-supervised learning
• Use labeled data and unlabeled data to predict on unlabeled/unseen points

• Reinforcement learning
• Sequential prediction and receiving feedbacks

47



Unsupervised learning example
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Clustering
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Clustering

• Unsupervised learning

• Requires data, but no labels

• Detect patterns e.g. in
• Group emails or search results

• Customer shopping patterns

• Regions of images

• Useful when don’t know what you’re looking for

• But: can get gibberish
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Clustering (cont.)

• Goal: Automatically segment data into groups of similar points
• Question: When and why would we want to do this?
• Useful for:

• Automatically organizing data
• Understanding hidden structure in some data
• Representing high-dimensional data in a low-dimensional space

• Examples: Cluster
• customers according to purchase histories
• genes according to expression profile
• search results according to topic
• Facebook users according to interests
• a museum catalog according to image similarity
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Intuition

• Basic idea: group together similar instances

• Example: 2D point patterns
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Intuition (cont.)

• Basic idea: group together similar instances

• Example: 2D point patterns

56



Intuition (cont.)

• Basic idea: group together similar instances

• Example: 2D point patterns

• What could “similar” mean?

• – One option: small Euclidean distance (squared)

• – Clustering results are crucially dependent on the measure of 
similarity (or distance) between “points” to be clustered
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Set-up

• Given the data:

• Each data point x is 𝑑-dimensional: 
𝑥𝑖 = (𝑥𝑖,1, … , 𝑥𝑖,𝑑)

• Define a distance function between data:

• Goal: segment the data into 𝐾 groups
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Clustering algorithms

• Partition algorithms (flat clustering)
• K-means

• Mixture of Gaussian

• Spectral Clustering

• Hierarchical algorithms
• Bottom up-agglomerative

• Top down-divisive
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Example

• Image segmentation

• Goal: Break up the image into meaningful or perceptually similar 
regions
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Example 2

• Gene expression data clustering
• Activity level of genes across time 
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K-Means
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K-Means

• An iterative clustering algorithm

• Initialize: Pick 𝐾 random points as 
cluster centers

• Alternate:
• Assign data points to closest cluster 

center

• Change the cluster center to the 
average of its assigned points

• Stop: when no points’ assignments 
change
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K-Means (cont.)

• An iterative clustering algorithm

• Initialize: Pick 𝐾 random points as 
cluster centers

• Alternate:
• Assign data points to closest cluster 

center

• Change the cluster center to the 
average of its assigned points

• Stop: when no points’ assignments 
change
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K-Means (cont.)

• An iterative clustering algorithm

• Initialize: Pick 𝐾 random points as 
cluster centers

• Alternate:
• Assign data points to closest cluster 

center

• Change the cluster center to the 
average of its assigned points

• Stop: when no points’ assignments 
change

65



Example

• Pick 𝐾 random points as 
cluster centers (means)

• Shown here for 𝐾 = 2
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Example (cont.)

• Iterative step 1

• Assign data points to closest 
cluster center
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Example (cont.)

• Iterative step 2

• Change the cluster center to 
the average of the assigned 
points
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Example (cont.)

• Repeat until convergence

• Convergence means that the 
differences of the center 
positions in two continuous 
loops is smaller than a 
threshold
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Example (cont.)

• Repeat until convergence

• Convergence means that the 
differences of the center 
positions in two continuous 
loops is smaller than a 
threshold
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Example (cont.)

• Repeat until convergence

• Convergence means that the 
differences of the center 
positions in two continuous 
loops is smaller than a 
threshold
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Example 2

• 𝐾 = 4
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Example 2 (cont.)

• 𝐾 = 4
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Example 2 (cont.)

• 𝐾 = 4
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Example 2 (cont.)

• 𝐾 = 4
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Example 2 (cont.)

• 𝐾 = 4
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Example 2 (cont.)

• 𝐾 = 4
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Remained Questions in K-Means
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Remained questions in K-means

• Although the workflow of K-means is straight forward, there are some 
important questions that need to be discussed

• How to choose the hyper-parameter 𝐾?

• How to initialize?
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How to choose K?

• K is the most important hyper-parameter in K-means which strongly 
affects its performance. In some situation, it’s not an easy task to find 
the proper K

• The solution includes:
• The elbow method

• The silhouette method
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The elbow method

• Calculate the Within-Cluster-Sum of Squared Errors (WSS) for 
different values of 𝐾, and choose the 𝐾 for which WSS stops 
dropping significantly. In the plot of WSS-versus-k, this is visible as an 
elbow

• Example:  𝐾 = 3
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The silhouette method

• The problem of the elbow method is that in many situations the most 
suitable 𝐾 cannot be unambiguously identified. So we need the 
silhouette method

• The silhouette value measures how similar a point is to its own cluster 
(cohesion) compared to other clusters (separation). The range of the 
silhouette value is between +1 and -1. A high value is desirable and 
indicates that the point is placed in the correct cluster
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How to initialize center positions?

• The positions of the centers in the stage of initialization are also very 
important in K-means algorithms. In some situations it can produce 
totally different clustering results

• Example:
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How to initialize center positions? (cont.)

• The positions of the centers in the stage of initialization are also very 
important in K-means algorithms. In some situations it can produce 
totally different clustering results

• Example:
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A possible solution

• Pick one point at random, then 𝐾 − 1
other points, each as far away as possible 
from the previous points
• OK, as long as there are no outliers (points 

that are far from any reasonable cluster)
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K-means++

1. The first centroid is chosen uniformly at random from the data 
points that we want to cluster. This is similar to what we do in K-
Means, but instead of randomly picking all the centroids, we just 
pick one centroid here

2. Next, we compute the distance 𝑑𝑥 is the nearest distance from data 
point 𝑥 to the centroids that have already been chosen

3. Then, choose the new cluster center from the data points with the 
probability of 𝑥 being proportional to 𝑑𝑥

2

4. We then repeat steps 2 and 3 until 𝐾 clusters have been chosen
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Example

• Suppose we have the following points and we want to make 3 clusters 
here:

87



Example (cont.)

• First step is to randomly pick a data point as a cluster centroid:
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Example (cont.)

• Calculate the distance 𝑑𝑥 of each data point with this centroid:
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Example (cont.)

• The next centroid will be sampled with the probability proportional to 
𝑑𝑥
2

• Say the sampled is the red one
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Example (cont.)

• To select the last centroid, compute 𝑑𝑥, which is the distance to its 
closest centroid 
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Example (cont.)

• Sample the one with the probability proportional to 𝑑𝑥
2

• Say, the blue one
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Properties of K-Means
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How to measure the performance

• K-means can be evaluated by the sum of 
distance from points to corresponding 
centers, or the WSS

• The loss will approach zero when increase 𝐾
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Properties of the K-means algorithm

• Guaranteed to converge in a finite number of iterations

• Running time per iteration:
1. Assign data points to closest cluster center

O(KN) time

2. Change the cluster center to the average of its assigned points

O(N)
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Convergence of K-means

Not guaranteed to 
converge to optimal
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Application: Segmentation

• Goal of segmentation is to partition an image into regions each of 
which has reasonably homogenous visual appearance

• Cluster the colors
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Agglomerative Clustering
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Agglomerative clustering

• Agglomerative clustering:
• First merge very similar instances

• Incrementally build larger clusters out of smaller clusters

• Algorithm:
• Maintain a set of clusters

• Initially, each instance in its own cluster

• Repeat:
• Pick the two closest clusters

• Merge them into a new cluster

• Stop when there’s only one cluster left
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Agglomerative clustering

• Produces not one clustering, but a family of clusterings represented 
by a dendrogram
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Example

• Different heights give different clustering

101



Closeness

• How should we define “closest” for clusters 
with multiple elements?

• Many options:
• Closest pair (single-link clustering)

• Farthest pair (complete-link clustering)

• Average of all pairs

• Different choices create different clustering 
behaviors

102



Closeness example
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Closeness example 2
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Dimensionality Reduction
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Example – MNIST dataset
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Principal Components Analysis
PCA
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Principal components analysis (PCA)

• Principal components analysis (PCA) is a technique that can be used 
to simplify a dataset

• It is usually a linear transformation that chooses a new coordinate 
system for the data set such that
• greatest variance by any projection of the dataset comes to lie on the first axis 

(then called the first principal component)

• the second greatest variance on the second axis, and so on

• PCA can be used for reducing dimensionality by eliminating the later 
principal components
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Example

• Consider the following 3D points

• If each component is stored in a byte, we need 18 = 3 × 6 bytes
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Example (cont.)

• Looking closer, we can see that all the points are related geometrically
• they are all in the same direction, scaled by a factor:
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Example (cont.)

• They can be stored using only 9 bytes (50% savings!): 
• Store one direction (3 bytes) + the multiplying constants (6 bytes)
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Geometrical interpretation

• View points in 3D space

• In this example, all the points happen to lie on one line
• a 1D subspace of the original 3D space
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Geometrical interpretation

• Consider a new coordinate system where the first axis is along the 
direction of the line

• In the new coordinate system, every point has only one non-zero 
coordinate
• we only need to store the direction of the line (a 3 bytes point) and the 

nonzero coordinates for each point (6 bytes) 113



Back to PCA

• Given a set of points, how can we know if they can be compressed 
similarly to the previous example?
• We can look into the correlation between the points by the tool of PCA
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From example to theory

• In previous example, PCA rebuilds the coordination system for the 
data by selecting 
• the direction with largest variance as the first new base direction

• the direction with the second largest variance as the second new base 
direction

• and so on

• Then how can we find the direction with largest variance?
• By the eigenvector for the covariance matrix of the data
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Review – Variance

• Variance is the expectation of the squared deviation of a random 
variable from its mean
• Informally, it measures how far a set of (random) numbers are spread out 

from their average value
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Review – Covariance 

• Covariance is a measure of the joint variability of two random 
variables
• If the greater values of one variable mainly correspond with the greater 

values of the other variable, and the same holds for the lesser values, (i.e., 
the variables tend to show similar behavior), the covariance is positive
• E.g. as the number of hours studied increases, the marks in that subject increase

• In the opposite case, when the greater values of one variable mainly 
correspond to the lesser values of the other, (i.e., the variables tend to show 
opposite behavior), the covariance is negative

• The sign of the covariance therefore shows the tendency in the linear
relationship between the variables

• The magnitude of the covariance is not easy to interpret because it is not 
normalized and hence depends on the magnitudes of the variables. The 
normalized version of the covariance, the correlation coefficient, however, 
shows by its magnitude the strength of the linear relation 117



Review – Covariance (cont.)

• Sample covariance
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covariance 𝑋, 𝑌 =
σ𝑖=1
𝑁 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

𝑁 − 1



PCA

• PCA tries to identify the subspace in which the data approximately 
lies in

• PCA uses an orthogonal transformation on the coordinate system to 
convert a set of observations of possibly correlated variables into a 
set of values of linearly uncorrelated variables called principal 
components
• The number of principal components is less than or equal to min 𝑑,𝑁
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Covariance matrix

• Suppose there are 3 dimensions, denoted as 𝑋, 𝑌, 𝑍. The covariance 
matrix is

• Note the diagonal is the covariance of each dimension with respect to 
itself, which is just the variance of each random variable

• Also 𝐶𝑂𝑉(𝑋, 𝑌) = 𝐶𝑂𝑉(𝑌, 𝑋)
• hence matrix is symmetric about the diagonal

• 𝑑-dimensional data will result in a 𝑑 × 𝑑 covariance matrix
120

𝐶𝑂𝑉 =

𝐶𝑂𝑉(𝑋, 𝑋) 𝐶𝑂𝑉(𝑋, 𝑌) 𝐶𝑂𝑉(𝑋, 𝑍)
𝐶𝑂𝑉(𝑌, 𝑋) 𝐶𝑂𝑉(𝑌, 𝑌) 𝐶𝑂𝑉(𝑌, 𝑍)
𝐶𝑂𝑉(𝑍, 𝑋) 𝐶𝑂𝑉(𝑍, 𝑌) 𝐶𝑂𝑉(𝑍, 𝑍)



Covariance in the covariance matrix

• Diagonal, or the variance, measures the deviation from the mean for 
data points in one dimension

• Covariance measures how one dimension random variable varies w.r.t.
another, or if there is some linear relationship among them
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Data processing

• Given the dataset 𝐷 = 𝑥(𝑖)
𝑖=1

𝑁

• Let ҧ𝑥 =
1

𝑁
σ𝑖=1
𝑁 𝑥(𝑖)

𝑋 =

𝑥(1) − ҧ𝑥
⊤

𝑥(2) − ҧ𝑥
⊤

⋮

𝑥(𝑁) − ҧ𝑥
⊤

∈ ℝ𝑁×𝑑

• Move the center of the data set to 0
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Data processing (cont.)

• 𝑄 = 𝑋⊤𝑋 = 𝑥(1) − ҧ𝑥 𝑥(2) − ҧ𝑥 ⋯ 𝑥(𝑁) − ҧ𝑥

𝑥(1) − ҧ𝑥
⊤

𝑥(2) − ҧ𝑥
⊤

⋮

𝑥(𝑁) − ҧ𝑥
⊤

• 𝑄 is square with 𝑑 dimension

• 𝑄 is symmetric

• 𝑄 is the covariance matrix [aka scatter matrix]

• 𝑄 can be very large (in vision, 𝑑 is often the number of pixels in an image!)
• For a 256 × 256 image, 𝑑 = 65536!!

• Don’t want to explicitly compute 𝑄
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PCA

• By finding the eigenvalues and eigenvectors of the covariance matrix, 
we find that the eigenvectors with the largest eigenvalues correspond 
to the dimensions that have the strongest variation in the dataset

• This is the principal component

• Application:
• face recognition, image compression

• finding patterns in data of high dimension
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PCA theorem

• Theorem: 

• Each 𝑥(𝑖) can be written as: 𝑥(𝑖) = ҧ𝑥 + σ𝑗=1
𝑑 𝑔𝑖𝑗𝑒𝑗

where 𝑒𝑗 are the 𝑑 eigenvectors of 𝑄 with non-zero eigenvalues

• Notes:
1. The eigenvectors 𝑒1𝑒2⋯𝑒𝑑 span an eigenspace
2. 𝑒1𝑒2⋯𝑒𝑑 are 𝑑 × 1 orthonormal vectors (directions in 𝑑-Dimensional 

space)
3. The scalars 𝑔𝑖𝑗 are the coordinates of 𝑥(𝑖) in the space

𝑔𝑖𝑗 = 𝑥(𝑖) − ҧ𝑥, 𝑒𝑗
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Using PCA to compress data

• Expressing 𝑥 in terms of 𝑒1𝑒2⋯𝑒𝑑 doesn’t change the size of the data

• However, if the points are highly correlated, many of the new 
coordinates of 𝑥 will become zero or close to zero

• Sort the eigenvectors 𝑒𝑖 according to their eigenvalue
𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑑

• Assume 𝜆𝑗 ≈ 0 if 𝑗 > 𝑘. Then

𝑥(𝑖) ≈ ҧ𝑥 +෍

𝑗=1

𝑘

𝑔𝑖𝑗𝑒𝑗
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Example – STEP 1
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http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

mean

this becomes the
new origin of the
data from now on



Example – STEP 2

• Calculate the covariance matrix

Cov =
0.616555556 0.615444444
0.615444444 0.716555556

• since cov(𝑋, 𝑌) is positive, it is expect that 𝑥 and 𝑦 increase together
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Example – STEP 3

• Calculate the eigenvectors and eigenvalues of the covariance matrix

• eigenvalues =
0.0490833989
1.28402771

• eigenvectors =
−0.735178656 −0.677873399
0.677873399 −0.735178656
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Example – STEP 3 (cont.)

• Eigenvectors are plotted as diagonal 
dotted lines on the plot

• Note they are perpendicular to each other

• Note one of the eigenvectors goes through 
the middle of the points, like drawing a 
line of best fit

• The second eigenvector gives us the other, 
less important, pattern in the data, that all 
the points follow the main line, but are off 
to the side of the main line by some 
amount
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Example – STEP 4

• Feature vector = 𝑒1 𝑒2 ⋯ 𝑒𝑑

• We can either form a feature vector with both of the eigenvectors:
−0.735178656 −0.677873399
0.677873399 −0.735178656

• or, we can choose to delete the smaller, less significant component:
−0.677873399
−0.735178656
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Example – STEP 5

• Deriving new data coordinates

• RowZeroMeanData is the mean-adjusted data, i.e. the data items are 
in each row, with each column representing a separate dimension

• RowFeatureVector is the matrix with the eigenvectors in the columns 
transposed so that the eigenvectors are now in the rows, with the 
most significant eigenvector at the top

• Note: We rotate the coordinate axes so high-variance axis comes first
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FinalData = RowZeroMeanData x RowFeatureVector

FinalData𝑁×𝑑 = 
𝑔 𝑥(1)

⊤

⋮

𝑔 𝑥(𝑁)
⊤

𝑁×𝑑

𝑒1
⊤

⋮
𝑒𝑑
⊤

𝑑×𝑑



Example – STEP 5 (cont.)

• The plot of the PCA results using both the two eigenvector
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Example – Final approximation
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2D point cloud
Approximation using one 
eigenvector basis



Example – Final approximation

FinalData𝑁×𝑑 =
𝑔 𝑥(1)

⊤

⋮

𝑔 𝑥(𝑁)
⊤

𝑁×𝑑

𝑒1
⊤

⋮
𝑒𝑑
⊤

𝑑×𝑑

≈

𝑔 𝑥(1)
1

… 𝑔 𝑥(1)
𝑘

… 𝑔 𝑥(1)
𝑑

⋮

𝑔 𝑥(𝑁)
1

… 𝑔 𝑥(𝑁)
𝑘

… 𝑔 𝑥(𝑁)
𝑑 𝑁×𝑑

𝑒1
⊤

⋮
𝑒𝑘
⊤

⋮
𝑒𝑑
⊤

𝑑×𝑑
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Revisit the eigenvectors in PCA

• It is critical to notice that the direction of maximum variance in the 
input space happens to be same as the principal eigenvector of the 
covariance matrix

• Why?
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Revisit the eigenvectors in PCA (cont.)

• The projection of each point 𝑥 to a direction 𝑢 (with 𝑢 = 1) is
𝑥⊤𝑢

• The variance of the projection is

෍

𝑖=1

𝑁

𝑥(𝑖) − ҧ𝑥
⊤
𝑢

2

= 𝑢⊤𝑄𝑢

which is maximized when 𝑢 is the eigenvector with the largest eigenvalue

• 𝑄 = σ𝑗=1
𝑑 𝜆𝑗𝑒𝑗𝑒𝑗

⊤ = 𝐸Λ𝐸⊤ with Λ =
𝜆1 ⋯
⋮ ⋱ ⋮

⋯ 𝜆𝑑
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Review – Total/Explained variance

• 𝑅2 =
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

• Total variance:

• Explained variance:

• Or, it can be computed as:

where
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Total variance and PCA

• Note that 𝐼 = 𝑒1𝑒1
⊤ +⋯+ 𝑒𝑑𝑒𝑑

⊤

• Total variance is 

• σ𝑖=1
𝑁 𝑥(𝑖) − ҧ𝑥

⊤
𝑥(𝑖) − ҧ𝑥

• = σ𝑖=1
𝑁 𝑥(𝑖) − ҧ𝑥

⊤
𝑒1𝑒1

⊤ +⋯+ 𝑒𝑑𝑒𝑑
⊤ 𝑥(𝑖) − ҧ𝑥

• = σ𝑗=1
𝑑 𝑒𝑗

⊤𝑄 𝑒𝑗 = 𝜆1 +⋯+ 𝜆𝑑

139



Total variance and PCA (cont.)
• Approximation of each 𝑥(𝑖) − ҧ𝑥 ≈ σ𝑗=1

𝑘 𝑔𝑖𝑗𝑒𝑗 =: ෤𝑥
(𝑖) − ҧ𝑥

• Then the explained variance is

• σ𝑖=1
𝑁 ෤𝑥(𝑖) − ҧ𝑥

⊤
෤𝑥(𝑖) − ҧ𝑥

• = σ𝑖=1
𝑁 ෤𝑥(𝑖) − ҧ𝑥

⊤
𝑒1𝑒1

⊤ +⋯+ 𝑒𝑑𝑒𝑑
⊤ ෤𝑥(𝑖) − ҧ𝑥

• = σ𝑗=1
𝑑 𝑒𝑗

⊤ ෨𝑄𝑒𝑗 = 𝜆1 +⋯+ 𝜆𝑘

• where ෨𝑄 = σ𝑖=1
𝑁 ෤𝑥(𝑖) − ҧ𝑥 ෤𝑥(𝑖) − ҧ𝑥

⊤
= 𝐸 ෨Λ𝐸⊤ with

• ෨Λ =

𝜆1
⋱

𝜆𝑘
0

0 140



Eigenvalues and Eigenvectors
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Properties

• Scalar 𝜆 and vector 𝑣 are eigenvalues and eigenvectors of 𝐴
𝐴𝑣 = 𝜆𝑣

• Visually, 𝐴𝑣 lies along the same line as the eigenvector of 𝑣
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Example
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How to solve eigenvalues and eigenvectors?

• If 𝐴 − 𝜆𝐼 𝑥 = 0 has a nonzero solution for 𝜆, then 𝐴 − 𝜆𝐼 is not 
invertible. Then the determinant of 𝐴 − 𝜆𝐼 must be zero

• 𝜆 is an eigenvalue of 𝐴 if and only if 𝐴 − 𝜆𝐼 is singular:
det 𝐴 − 𝜆𝐼 = 0
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Example

• Find the eigenvalues and eigenvectors of 𝐴 =
1 2
2 4

• Need to solve det 𝐴 − 𝜆𝐼 = 0

• 𝐴 − 𝜆𝐼 =
1 − 𝜆 2
2 4 − 𝜆

• det 𝐴 − 𝜆𝐼 = 1 − 𝜆 4 − 𝜆 − 2 × 2 = 𝜆2 − 5𝜆

• det 𝐴 − 𝜆𝐼 = 0 would imply 𝜆 = 0 and 𝜆 = 5
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Example (cont.)

• Then solve 𝐴 − 𝜆𝐼 𝑥 = 0 to get the eigenvectors for each of the 
eigenvalues

• 𝐴𝑥 = 0 has a nonzero solution of 
2
−1

, or 
2/ 5

−1/ 5

• 𝐴 − 5𝐼 𝑥 = 0 has a nonzero solution of 
1
2

, or 
1/ 5

2/ 5

• Note: Eigenvectors for different eigenvalues are orthogonal
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Singular Value Decomposition
SVD
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SVD

• Singular Value Decomposition (SVD) is a factorization method of 
matrix. It states that any 𝑚 × 𝑛 matrix 𝐴 can be written as the 
product of 3 matrices:

• Where:
• U is 𝑚 ×𝑚 and its columns are orthonormal eigenvectors of 𝐴𝐴⊤

• V is 𝑛 × 𝑛 and its columns are orthonormal eigenvectors of 𝐴⊤𝐴

• S is 𝑚 × 𝑛 is a diagonal matrix with 𝑟 elements equal to the root of the 
positive eigenvalues of 𝐴𝐴⊤ or 𝐴⊤𝐴 (both matrices have the same positive 
eigenvalues anyway)
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In full matrix form
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Example

• Let’s assume：

• We can have:
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Example (cont.)

• Compute U and V respectively:
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Example (cont.)

• Finally, we have:
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Visualization

• The eigenvector 𝑣𝑗 of 𝑉 is transformed into 𝐴𝑣𝑗 = 𝜎𝑗𝑢𝑗
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Insight
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SVD and PCA

• 𝑋 = 𝑈𝑆𝑁×𝑑𝑉
⊤

• 𝑄 = 𝑋⊤𝑋 = 𝑉 𝑆⊤ 𝑑×𝑁𝑈
⊤ ∙ 𝑈𝑆𝑁×𝑑𝑉

⊤ = 𝑉 𝑆⊤𝑆 𝑑×𝑑𝑉
⊤

• This explains why singular value 𝜎𝑗 is the square root of the 
eigenvalue 𝜆𝑗 of 𝑄

• 𝜆𝑗 = 𝜎𝑗
2

• Also 𝑉 contains eigenvectors of 𝑋⊤𝑋

• Similarly, 𝑋𝑋⊤ = 𝑈𝑆𝑁×𝑑𝑉
⊤ ∙ 𝑉 𝑆⊤ 𝑑×𝑁𝑈

⊤ = 𝑈 𝑆𝑆⊤ 𝑁×𝑁𝑈
⊤
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𝑆⊤𝑆 𝑑×𝑑 =
𝜎1
2 ⋯
⋮ ⋱ ⋮

⋯ 𝜎𝑑
2

𝑆𝑆⊤ 𝑁×𝑁 =

𝜎1
2 ⋯
⋮ ⋱ ⋮

⋯
𝜎𝑑
2

⋱
0



Application

• Matrix factorization in recommendation system

• Suppose in the database of Taobao, there are 𝑚 users and 𝑛 items, 
and an 𝑚 × 𝑛 binary matrix 𝐴
• Each entry indicates whether a user has bought an item or not
• As each user only buys very few items among all items, the matrix is very 

sparse

• As the manager of Taobao, how can you predict the likelihood that a 
user will buy a given item?

• SVD could help
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Gaussian Mixture Models
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Gaussian Mixture Models

• Is a clustering algorithms

• Difference with K-means
• K-means outputs the label of a sample

• GMM outputs the probability that a sample 
belongs to a certain class

• GMM can also be used to generate new samples!
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K-means vs GMM
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High-dimensional Gaussian distribution

• The probability density of Gaussian distribution on 𝑥 = 𝑥1, … , 𝑥𝑑
⊤

is

𝒩 𝑥|𝜇, σ =

exp −
1
2

𝑥 − 𝜇 ⊤σ−1 𝑥 − 𝜇

2𝜋 𝑑 σ
• where 𝜇 is the mean vector

• σ is the symmetric covariance matrix (positive semi-definite)

• E.g. the Gaussian distribution with 
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𝑓 𝑥|𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒
−

𝑥−𝜇 2

2𝜎2



Mixture of Gaussian

• The probability given in a mixture of K Gaussians is:

𝑝 𝑥 =෍

𝑗=1

𝐾

𝑤𝑗 ∙ 𝒩(𝑥|𝜇𝑗 , Σ𝑗)

where 𝑤𝑗 is the prior probability of the j-th Gaussian

• Example
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Examples
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Observation



Data generation

• Let the parameter set 𝜃 = {𝑤𝑗 , 𝜇𝑗 , Σ𝑗: 𝑗}, then the probability density 
of mixture Gaussian can be written as 

𝑝 𝑥 𝜃 =෍

𝑗=1

𝐾

𝑤𝑗 ∙ 𝒩(𝑥|𝜇𝑗 , Σ𝑗)

• Equivalent to generate data points in two steps
• Select which component 𝑗 the data point belongs to according to the 

categorical (or multinoulli) distribution of 𝑤1, … , 𝑤𝐾

• Generate the data point according to the probability of 𝑗-th component
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Learning task

• Given a dataset 𝑋 = 𝑥(1), 𝑥(2),∙∙∙, 𝑥(𝑁) to train the GMM model

• Find the best 𝜃 that maximizes the probability ℙ 𝑋 𝜃

• Maximal likelihood estimator (MLE)
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Introduce latent variable

• For data points 𝑥(𝑖), 𝑖 = 1, … , 𝑁, let’s write the probability as

ℙ 𝑥(𝑖) 𝜃 =෍

𝑗=1

𝐾

𝑤𝑗 ∙ 𝒩(𝑥(𝑖)|𝜇𝑗 , Σ𝑗)

where σ𝑗=1
𝐾 𝑤𝑗 = 1

• Introduce latent variable
• 𝑧(𝑖) is the Gaussian cluster ID indicates which Gaussian 𝑥(𝑖) comes from

• ℙ 𝑧(𝑖) = 𝑗 = 𝑤𝑗 “Prior”

• ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗; 𝜃 = 𝒩(𝑥(𝑖)|𝜇𝑗 , Σ𝑗)

• ℙ 𝑥(𝑖) 𝜃 = σ𝑗=1
𝐾 ℙ 𝑧(𝑖) = 𝑗 ∙ ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗; 𝜃
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Maximal likelihood
• Let 𝑙 𝜃 = σ𝑖=1

𝑁 logℙ(𝑥 𝑖 ; 𝜃) = σ𝑖=1
𝑁 logσ𝑗ℙ(𝑥

𝑖 , 𝑧 𝑖 = 𝑗; 𝜃) be 
the log-likelihood

• We want to solve

argmax 𝑙 𝜃 = argmax ෍

𝑖=1

𝑁

log෍

𝑗=1

𝐾

ℙ 𝑧(𝑖) = 𝑗 ∙ ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗; 𝜃

= argmax ෍

𝑖=1

𝑁

log෍

𝑗=1

𝐾

𝑤𝑗 ∙ 𝒩(𝑥(𝑖)|𝜇𝑗 , Σ𝑗)

• No closed solution by solving
𝜕𝑙 𝑋|𝜃

𝜕𝑤
= 0,

𝜕𝑙 𝑋|𝜃

𝜕𝜇
= 0,

𝜕𝑙 𝑋|𝜃

𝜕Σ
= 0
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Likelihood maximization
• If we know 𝑧(𝑖) for all 𝑖, the problem becomes

argmax 𝑙 𝜃 = argmax ෍

𝑖=1

𝑁

log ℙ 𝑥(𝑖) 𝜃

= argmax ෍

𝑖=1

𝑁

logℙ 𝑥(𝑖), 𝑧(𝑖) 𝜃

= argmax ෍

𝑖=1

𝑁

log ℙ 𝑥(𝑖) 𝜃, 𝑧(𝑖) + logℙ 𝑧(𝑖) 𝜃

= argmax ෍

𝑖=1

𝑁

log𝒩(𝑥(𝑖)|𝜇𝑧(𝑖) , Σ𝑧(𝑖)) + log𝑤𝑧(𝑖)
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The solution is

• 𝑤𝑗 =
1

𝑁
σ𝑖=1
𝑁 𝟏 𝑧(𝑖) = 𝑗

• 𝜇𝑗 =
σ𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗 𝑥(𝑖)

σ𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗

• Σ𝑗 =
σ𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗 𝑥(𝑖)−𝜇𝑗 𝑥(𝑖)−𝜇𝑗

⊤

σ𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗

Average over 
each cluster



Likelihood maximization (cont.)

• Given the parameter 𝜃 = {𝑤𝑗 , 𝜇𝑗 , Σ𝑗: 𝑗}, the posterior distribution of 
each latent variable 𝑧(𝑖) can be inferred

• ℙ 𝑧(𝑖) = 𝑗 𝑥(𝑖); 𝜃 =
ℙ 𝑥(𝑖), 𝑧(𝑖) = 𝑗 𝜃

ℙ 𝑥(𝑖) 𝜃

• =
ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗; 𝜇𝑗 , Σ𝑗 ℙ 𝑧(𝑖) = 𝑗 𝑤

σ
𝑗′=1
𝐾 ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗′; 𝜇𝑗′ , Σ𝑗′ ℙ 𝑧(𝑖) = 𝑗′ 𝑤

• Or 𝑤𝑗
(𝑖)

= ℙ 𝑧(𝑖) = 𝑗 𝑥(𝑖); 𝜃 ∝ ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗; 𝜇𝑗 , Σ𝑗 ℙ 𝑧(𝑖) = 𝑗 𝑤
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Likelihood maximization (cont.)

• For every possible values of 𝑧(𝑖)’s

• Take the expectation on probability of 𝑧(𝑖)

169

Which is equivalent to

• 𝑤𝑗 =
1

𝑁
σ𝑖=1
𝑁 𝟏 𝑧(𝑖) = 𝑗

• σ𝑖=1
𝑁 𝟏 𝑧(𝑖) = 𝑗 𝜇𝑗 = σ𝑖=1

𝑁 𝟏 𝑧(𝑖) = 𝑗 𝑥(𝑖)

• σ𝑖=1
𝑁 𝟏 𝑧(𝑖) = 𝑗 Σ𝑗 = σ𝑖=1

𝑁 𝟏 𝑧(𝑖) = 𝑗 𝑥(𝑖) − 𝜇𝑗 𝑥(𝑖) − 𝜇𝑗
⊤

Take expectation on two sides

• 𝑤𝑗 =
1

𝑁
σ𝑖=1
𝑁 ℙ(𝑧(𝑖) = 𝑗)

• σ𝑖=1
𝑁 ℙ(𝑧 𝑖 = 𝑗) 𝜇𝑗 = σ𝑖=1

𝑁 ℙ(𝑧 𝑖 = 𝑗)𝑥(𝑖)

• σ𝑖=1
𝑁 ℙ(𝑧 𝑖 = 𝑗) Σ𝑗 = σ𝑖=1

𝑁 ℙ(𝑧 𝑖 = 𝑗) 𝑥(𝑖) − 𝜇𝑗 𝑥(𝑖) − 𝜇𝑗
⊤

The solution is

• 𝑤𝑗 =
1

𝑁
σ𝑖=1
𝑁 𝟏 𝑧(𝑖) = 𝑗

• 𝜇𝑗 =
σ𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗 𝑥(𝑖)

σ𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗

• Σ𝑗 =
σ𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗 𝑥(𝑖)−𝜇𝑗 𝑥(𝑖)−𝜇𝑗

⊤

σ𝑖=1
𝑁 𝟏 𝑧(𝑖)=𝑗

𝑤𝑗
(𝑖)

= ℙ 𝑧(𝑖) = 𝑗 𝑥(𝑖); 𝜃

The solution is

• 𝑤𝑗 =
1

𝑁
σ𝑖=1
𝑁 𝑤𝑗

(𝑖)

• 𝜇𝑗 =
σ𝑖=1
𝑁 𝑤𝑗

(𝑖)
𝑥(𝑖)

σ𝑖=1
𝑁 𝑤

𝑗
(𝑖)

• Σ𝑗 =
σ𝑖=1
𝑁 𝑤𝑗

(𝑖)
𝑥(𝑖)−𝜇𝑗 𝑥(𝑖)−𝜇𝑗

⊤

σ𝑖=1
𝑁 𝑤

𝑗
(𝑖)

Take 
expectation



Likelihood maximization (cont.)

• If we know the distribution of 𝑧(𝑖)’s, then it is equivalent to maximize

𝑙 ℙ𝑧(𝑖) , 𝜃 = ෍

𝑖=1

𝑁

෍

𝑗=1

𝐾

ℙ 𝑧(𝑖) = 𝑗 log
ℙ 𝑥(𝑖), 𝑧 𝑖 = 𝑗|𝜃

ℙ 𝑧(𝑖) = 𝑗

• Compared with previous if we know the values of 𝑧(𝑖)

argmax ෍

𝑖=1

𝑁

logℙ 𝑥(𝑖), 𝑧(𝑖) 𝜃

• Note that it is hard to solve if we directly maximize

𝑙 𝜃 =෍

𝑖=1

𝑁

logℙ 𝑥(𝑖) 𝜃 =෍

𝑖=1

𝑁

log෍

𝑗=1

𝐾

ℙ 𝑧(𝑖) = 𝑗|𝜃 ℙ 𝑥(𝑖) 𝑧(𝑖) = 𝑗; 𝜃
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is a lower bound of



Expectation maximization methods

• E-step: 
• Infer the posterior distribution of the latent variables given the model 

parameters

• M-step: 
• Tune parameters to maximize the data likelihood given the latent variable 

distribution

• EM methods
• Iteratively execute E-step and M-step until convergence
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EM for GMM

• Repeat until convergence:{
(E-step) For each 𝑖, 𝑗, set

𝑤𝑗
(𝑖)

= ℙ 𝑧(𝑖) = 𝑗 𝑥(𝑖), 𝑤, 𝜇, Σ
(M-step) Update the parameters

𝑤𝑗 =
1

𝑁
෍

𝑖=1

𝑁

𝑤𝑗
(𝑖)
, 𝜇𝑗 =

σ𝑖=1
𝑁 𝑤𝑗

(𝑖)
𝑥(𝑖)

σ𝑖=1
𝑁 𝑤𝑗

(𝑖)

Σ𝑗 =
σ𝑖=1
𝑁 𝑤𝑗

(𝑖)
𝑥(𝑖) − 𝜇𝑗 𝑥(𝑖) − 𝜇𝑗

⊤

σ𝑖=1
𝑁 𝑤𝑗

(𝑖)

}
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Example

• Hidden variable: for each point, which Gaussian generates it?
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𝑝 𝑥 𝜃 =෍

𝑗=1

𝐾

𝑤𝑗 ∙ 𝒩(𝑥|𝜇𝑗 , Σ𝑗)



Example (cont.)

• E-step: for each point, estimate the probability that each Gaussian 
component generated it

174



Example (cont.)

• M-Step: modify the parameters according to the hidden variable to 
maximize the likelihood of the data 
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Example

176

𝐾 = 2 𝐾 = 16

400 new data 
points generated 
from the 16-GMM



Remaining issues (cont.)

• Simplification of the covariance matrices
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Expectation and Maximization
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Background: Latent variable models

• Some of the variables in the model are not observed

• Examples: mixture model, Hidden Markov Models, LDA, etc
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Background: Marginal likelihood

• Joint model ℙ 𝑥, 𝑧|𝜃 , 𝜃 is the model parameter

• With 𝑧 unobserved, we marginalize out 𝑧 and use the marginal log-
likelihood for learning

ℙ 𝑥|𝜃 =෍

𝑧

ℙ 𝑥, 𝑧|𝜃

• Example: mixture model

ℙ 𝑥|𝜃 =෍

𝑘

ℙ 𝑥|𝑧 = 𝑘, 𝜃𝑘 ℙ 𝑧 = 𝑘|𝜃𝑘 =෍

𝑘

𝜋𝑘ℙ 𝑥|𝑧 = 𝑘, 𝜃𝑘

where 𝜋𝑘 is the mixing proportions 
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Examples

• Mixture of Bernoulli

• Mixture of Gaussians

• Hidden Markov Model
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Learning the hidden variable 𝑍

• If all 𝑧 observed, the likelihood factorizes, and learning is relatively 
easy

• If 𝑧 not observed, we have to handle a sum inside log
• Idea 1: ignore this problem and simply take derivative and follow the gradient

• Idea 2: use the current 𝜃 to estimate 𝑧, fill them in and do fully-observed 
learning

• Is there a better way? 
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General EM methods

• Repeat until convergence{
(E-step) For each data point 𝑖, set

𝑞𝑖 𝑗 = ℙ 𝑧(𝑖) = 𝑗|𝑥 𝑖 ; 𝜃
(M-step) Update the parameters

argmax𝜃 𝑙 𝑞𝑖 , 𝜃 =෍

𝑖=1

𝑁

෍

𝑗

𝑞𝑖 𝑗 log
ℙ(𝑥 𝑖 , 𝑧 𝑖 = 𝑗; 𝜃)

𝑞𝑖 𝑗

}
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Convergence of EM

• Denote 𝜃(𝑡) and 𝜃(𝑡+1) as the parameters of two successive iterations 
of EM, we want to prove that

𝑙 𝜃(𝑡) ≤ 𝑙 𝜃 𝑡+1

where note that

𝑙 𝜃 =෍

𝑖=1

𝑁

logℙ(𝑥 𝑖 ; 𝜃) =෍

𝑖=1

𝑁

log෍

𝑗

ℙ(𝑥 𝑖 , 𝑧 𝑖 = 𝑗; 𝜃)

• This shows EM always monotonically improves the log-likelihood, 
thus ensures EM will at least converge to a local optimum
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Proof
• Start from 𝜃(𝑡), we choose the posterior of latent variable

𝑞𝑖
(𝑡)

𝑗 = 𝑝 𝑧(𝑖) = 𝑗|𝑥 𝑖 ; 𝜃(𝑡)

• By Jensen’s inequality on the log function

• 𝑙 𝑞, 𝜃(𝑡) = σ𝑖=1
𝑁 σ𝑗 𝑞𝑖 𝑗 log

𝑝(𝑥 𝑖 ,𝑧 𝑖 =𝑗;𝜃(𝑡))

𝑞𝑖 𝑗

≤ ෍

𝑖=1

𝑗

log෍

𝑗

𝑞𝑖 𝑗 ∙
𝑝 𝑥 𝑖 , 𝑧 𝑖 = 𝑗; 𝜃 𝑡

𝑞𝑖 𝑗

=෍

𝑖=1

𝑗

log෍

𝑗

𝑝 𝑥 𝑖 , 𝑧 𝑖 = 𝑗; 𝜃(𝑡) = 𝑙 𝜃(𝑡)

• When 𝑞𝑖
(𝑡)

𝑗 = 𝑝 𝑧(𝑖) = 𝑗|𝑥 𝑖 ; 𝜃(𝑡) , the above inequality is equality
185

𝑙 𝜃(𝑡) = 𝑙 𝑞𝑖
(𝑡)
, 𝜃(𝑡) ≥ 𝑙 𝑞, 𝜃(𝑡)



Proof (cont.)

• Then the parameter 𝜃(𝑡+1) is obtained by maximizing 

𝑙 𝑞𝑖
(𝑡)
, 𝜃 =෍

𝑖=1

𝑁

෍

𝑗

𝑞𝑖
(𝑡)

log
𝑝(𝑥 𝑖 , 𝑧 𝑖 = 𝑗; 𝜃)

𝑞𝑖
(𝑡)

• Thus 

𝑙 𝜃(𝑡+1) ≥ 𝑙 𝑞𝑖
(𝑡)
, 𝜃(𝑡+1) ≥ 𝑙 𝑞𝑖

(𝑡)
, 𝜃(𝑡) = 𝑙 𝜃(𝑡)

• Since the likelihood is at most 1, EM will converge (to a local optimum)
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Example

• Follow previous example,  suppose 
ℎ = 20, 𝑐 = 10, 𝑑 = 10, 𝜇(0) = 0

• Then

• Convergence is generally linear: error 
decreases by a constant factor each 
time step
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K-means and EM

• After initialize the position of the centers, K-means interactively 
execute the following two operations:
• Assign the label of the points based on their distances to the centers

• Specific posterior distribution of latent variable

• E-step

• Update the positions of the centers based on the labeling results
• Given the labels, optimize the model parameters

• M-step
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