
Review for the Midterm
Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/VE445/index.html

1

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/VE445/index.html

Exam code

• Exam on Oct 29 8:00-9:40 at Dong Xia Yuan 113 (lecture classroom)

• Finish the exam paper by yourself

• Allowed:
• Calculator, watch (not smart)

• Not allowed:
• Books, materials, cheat sheet, …

• Phones, any smart device

• No entering after 8:25

• Early submission period: 8:30--9:25

2

Coverage of midterm

• Basics

• Supervised learning
• Linear Regression

• Logistic regression

• SVM and Kernel methods

• Decision Tree

• Deep learning
• Neural Networks

• Backpropagation

• Convolutional Neural Network

• Recurrent Neural Network

• Unsupervised learning
• K-means, PCA, EM, GMM

• Reinforcement learning
• Multi-armed bandits

• MDP

• Bellman equations

• Q-learning

• Learning theory
• PAC, VC-dimension, bias-variance

decomposition

3

Machine Learning Categories

• Unsupervised learning
• No labeled data

• Supervised learning
• Use labeled data to predict on unseen points

• Semi-supervised learning
• Use labeled data and unlabeled data to predict on unlabeled/unseen points

• Reinforcement learning
• Sequential prediction and receiving feedbacks

4

Supervised learning example

5

6

Regression example

7

Model Evaluations

8

Classification -- Model evaluations

• Confusion Matrix
• TP – True Positive ; FP – False Positive

• FN – False Negative; TN – True Negative

Predicted Class

Actual

Class

Class = Yes Class = No

Class = Yes a (TP) b (FN)

Class = No c (FP) d (TN)

FNFPTNTP

TNTP

dcba

da

+++

+
=

+++

+
= Accuracy

9

Classification -- Model evaluations

• Limitation of Accuracy
• Consider a 2-class problem

• Number of Class 0 examples = 9990

• Number of Class 1 examples = 10

• If a “stupid” model predicts everything to be class 0, accuracy is 9990/10000 =
99.9 %

• The accuracy is misleading because the model does not detect any
example in class 1

10

Classification -- Model evaluations

• Cost-sensitive measures

cba

a

pr

rp

ba

a

FNTP

TP

ca

a

FPTP

TP

++
=

+
=

+
=

+
=

+
=

+
=

2

22
(F) measure-F

(r) Recall

 (p) Precision

Harmonic mean of Precision and Recall
(Why not just average?)

Predicted Class

Actual

Class

Class = Yes Class = No

Class = Yes a (TP) b (FN)

Class = No c (FP) d (TN)

11

Example

• Given 30 human photographs, a computer predicts 19 to be male, 11
to be female. Among the 19 male predictions, 3 predictions are not
correct. Among the 11 female predictions, 1 prediction is not correct.

Predicted Class

Actual

Class

Male Female

Male a = TP = 16 b = FN = 1

Female c = FP = 3 d = TN = 10

12

Example

• Accuracy = (16 + 10) / (16 + 3 + 1 + 10) = 0.867

• Precision = 16 / (16 + 3) = 0.842

• Recall = 16 / (16 + 1) = 0.941

• F-measure = 2 (0.842)(0.941) / (0.842 + 0.941)

= 0.889

Predicted Class

Actual

Class

Male Female

Male a = TP = 16 b = FN = 1

Female c = FP = 3 d = TN = 10

13

Model Selections

14

Minimize the error rate?

• Given a data set 𝑆

• Error rate =
of Errors

of Total Samples

• Accuracy = 1 - Error rate

Error rate =
3

19
Error rate =

2

19

https://malware.news/uploads/default/original/3X/6/d/6df12e50b7f97cdba92697ce164cbe4a5502a349.png
https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Overfitting.svg/1200px-Overfitting.svg.png 15

https://malware.news/uploads/default/original/3X/6/d/6df12e50b7f97cdba92697ce164cbe4a5502a349.png
https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Overfitting.svg/1200px-Overfitting.svg.png

Fitting

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190523171258/overfitting_2.png 16

Split training and test

• Split dataset to training and test

• Train models on training dataset

• The evaluation of the model is the
error on test dataset

• Might overfit the training dataset

17

Cross validation

18

Bias

19

Variance

20

Underfitting and overfitting

21

Bias-variance decomposition
True value Estimated value

22

Can be understood by replacing 𝑦 and ො𝑦 with model parameters 𝜃 and መ𝜃

Balance bias-variance trade-off

23

Machine Learning Process

https://techblog.cdiscount.com/assets/images/DataScience/automl/ML_process.png
24

Linear Regression

25

Linear regression

• Use linear relationship to approximate the function of 𝑌 on 𝑋

• How to select the most appropriate linear model?

• Error: Mean squared error (MSE)

• Where 𝑌 and ෠𝑌 are the true values and predicted values

• Find the linear model with the smallest MSE

26

Question

• Given the dataset
1,1 , 2,4 , 3,5

and the linear model
𝑌 = 2𝑋 + 1

• What is the mean squared error?

• The predicted points are
1,3 , 2,5 , (3,7)

• So the mean squared error (MSE) is
1

3
22 + 12 + 22 = 3

27

Question 2

• Given the <real value, predicted value> pairs as:
< 1.2, 1.7 >,< 0.9, 0.2 >,< −0.3,0.1 >,< 1.3, 0.3 >,< 1.1, 1.2 >
compute the means squared error

• The answer is
1

5
0.52 + 0.72 + 0.42 + 12 + 0.12 = 0.382

28

How to get linear model with minimal MSE

• MSE for model parameter 𝜃:

𝐽(𝜃) =
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝜃⊤𝑥𝑖
2

• Find an estimator መ𝜃 to minimize 𝐽(𝜃)

• 𝑦 = 𝜃⊤𝑥 + 𝑏 + 𝜀. Then we can write 𝑥′ = 1, 𝑥1, … , 𝑥𝑑 , 𝜃 =
(𝑏, 𝜃1, … , 𝜃𝑑), then 𝑦 = 𝜃⊤𝑥′ + 𝜀

• Note that 𝐽(𝜃) is a convex function in 𝜃, so it has a unique minimal
point

29

Interpretation

Figure credit: Kevin Murphy 30

𝐽(𝜃) is convex

• 𝑓 𝑥 = (𝑦 − 𝑥)2= (𝑥 − 𝑦)2 is convex in 𝑥

• 𝑔 𝜃 = 𝑓 𝜃⊤𝑥
𝑔 1 − 𝑡 𝜃1 + 𝑡𝜃2
= 𝑓 1 − 𝑡 𝜃1

⊤𝑥 + 𝑡𝜃2
⊤𝑥

≤ 1 − 𝑡 𝑓 𝜃1
⊤𝑥 + 𝑡𝑓 𝜃2

⊤𝑥
= 1 − 𝑡 𝑔 𝜃1 + 𝑡𝑔(𝜃2)

• The sum of convex functions is convex

• Thus 𝐽(𝜃) is convex

Check it by yourself !

Convexity of f

31

Minimal point (Normal equation)

•
𝜕𝐽(𝜃)

𝜕𝜃
=

2

𝑁
σ𝑖=1
𝑁 𝜃⊤𝑥𝑖 − 𝑦𝑖 𝑥𝑖 =

2

𝑁
σ𝑖=1
𝑁 𝑥𝑖𝑥𝑖

⊤𝜃 − 𝑥𝑖𝑦𝑖

• Letting the derivative be zero

෍

𝑖=1

𝑁

𝑥𝑖𝑥𝑖
⊤ 𝜃 =෍

𝑖=1

𝑁

𝑥𝑖𝑦𝑖

• If we write 𝑋 =
𝑥1
⊤

⋮
𝑥𝑁
⊤

=
𝑥1
1 ⋯ 𝑥1

𝑑

⋮
𝑥𝑁
1 ⋯ 𝑥𝑁

𝑑
, 𝑦 =

𝑦1
⋮
𝑦𝑁

, then

𝑋⊤𝑋𝜃 = 𝑋⊤𝑦
32

Minimal point (Normal equation) (cont.)

• 𝑋⊤𝑋𝜃 = 𝑋⊤𝑦

• When 𝑋⊤𝑋 is invertible
መ𝜃 = 𝑋⊤𝑋 −1𝑋⊤𝑦

33

Question 1

• Given the dataset
1,1 , 2,4 , 3,5

compute the normal equation for 𝜃, solve 𝜃 and compute the MSE

• 𝑋 =

𝑥1
⊤

𝑥2
⊤

𝑥3
⊤

=
1 1
1 2
1 3

, 𝑦 =
1
4
5

𝑋⊤𝑋 =
3 6
6 14

, 𝑋⊤𝑦 =
10
24

3 6
6 14

𝜃1
𝜃2

=
10
24

• 𝜃 = −
2

3
, 2 , y = −

2

3
+ 2x. MSE=

2

9

𝑋⊤𝑋𝜃 = 𝑋⊤𝑦

34

Question 2

• Some economist say that the impact of GDP in ‘current year’ will have
effect on vehicle sales ‘next year’. So whichever year GDP was less,
the coming year sales was lower and when GDP increased the next
year vehicle sales also increased.

• Let’s have the equation as 𝑦 = 𝜃0 + 𝜃1𝑥, where

• 𝑦 = number of vehicles sold in the year

• 𝑥 = GDP of prior year

We need to find 𝜃0 and 𝜃1

35

Question 2 (cont.)
• Here is the data between 2011 and 2016.

• Question 1: what is the normal equation?

• Question 2: suppose the GDP increasement in 2017 is 7%, how many
vehicles will be sold in 2018?

Year GDP Sales of vehicle

2011 6.2

2012 6.5 26.3

2013 5.48 26.65

2014 6.54 25.03

2015 7.18 26.01

2016 7.93 27.9

2017 30.47

2018

Homework

36

Gradient method motivation – large dataset

• Too big to compute directly
መ𝜃 = 𝑋⊤𝑋 −1𝑋⊤𝑦

• Recall the objective is to minimize the
loss function

𝐿 𝜃 = 𝐽 𝜃 =
1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝜃⊤𝑥𝑖
2

• Gradient descent method
learning rate

37

Batch gradient descent

• 𝑓𝜃 𝑥 = 𝜃⊤𝑥

38

Stochastic gradient descent

39

Mini-Batch Gradient Descent

40

Comparisons

41

Searching

• Start with a new initial value 𝜃

• Update 𝜃 iteratively (gradient descent)

• Ends at a minimum

42

Uniqueness of minimum for convex objectives

43

Learning rate

44

Regularization

45

Problems of ordinary least squares (OLS)
• Best model is to minimize both the bias and the

variance

• Ordinary least squares (OLS)
• Previous linear regression
• Unbiased
• Can have huge variance

• Multi-collinearity among data
• When predictor variables are correlated to each other and to the

response variable
• E.g. To predict patient weight by the height, sex, and diet. But height

and sex are correlated

• Many predictor variables
• Feature dimension close to number of data points

• Solution
• Reduce variance at the cost of introducing some bias
• Add a penalty term to the OLS equation

46

Ridge regression
• Regularization with L2 norm

𝐿𝑅𝑖𝑑𝑔𝑒 = (𝑦 − 𝑋𝜃)2+𝜆 𝜃 2
2

• 𝜆 → 0, መ𝜃𝑅𝑖𝑑𝑔𝑒 → መ𝜃𝑂𝐿𝑆

• 𝜆 → ∞, መ𝜃 → 0

• As 𝜆 becomes larger, the variance decreases but the
bias increases

• 𝜆: Trade-off between bias and variance
• Choose by cross-validation

• Ridge regression decreases the complexity of a
model but does not reduce the number of variables
(compared to Lasso later) 47

Solution of the ridge regression

•
𝜕𝐿𝑅𝑖𝑑𝑔𝑒

𝜕𝜃
= 2σ𝑖=1

𝑁 𝜃⊤𝑥𝑖 − 𝑦𝑖 𝑥𝑖 + 2𝜆𝜃

• Letting the derivative be zero

𝜆𝐼 +෍

𝑖=1

𝑁

𝑥𝑖𝑥𝑖
⊤ 𝜃 =෍

𝑖=1

𝑁

𝑥𝑖𝑦𝑖

• If we write 𝑋 =
𝑥1
⊤

⋮
𝑥𝑁
⊤

=
𝑥1
1 ⋯ 𝑥1

𝑑

⋮
𝑥𝑁
1 ⋯ 𝑥𝑁

𝑑
, 𝑦 =

𝑦1
⋮
𝑦𝑁

, then

𝜆𝐼 + 𝑋⊤𝑋 𝜃 = 𝑋⊤𝑦
መ𝜃𝑟𝑖𝑑𝑔𝑒 = 𝜆𝐼 + 𝑋⊤𝑋 −1𝑋⊤𝑦

48

Recall the normal
equation for OLS is
𝑋⊤𝑋𝜃 = 𝑋⊤𝑦

Always invertible

Lasso regression

• Lasso regression: linear regression with L1
norm

𝐿𝐿𝑎𝑠𝑠𝑜 = (𝑦 − 𝑋𝜃)2+ 𝜆||𝜃||1

• Lasso eliminates some features entirely and
gives a subset of predictors that helps
mitigate multi-collinearity and model
complexity

• Predictors do not shrink towards zero
significantly that they are important and
thus L1 regularization allows for feature
selection (sparse selection)

49

Ridge vs Lasso

• Often neither one is overall better.

• Lasso can set some coefficients to zero, thus performing variable selection, while ridge
regression cannot.

• Both methods allow to use correlated predictors, but they solve multicollinearity issue
differently:
• In ridge regression, the coefficients of correlated predictors are similar;
• In lasso, one of the correlated predictors has a larger coefficient, while the rest are (nearly) zeroed.

• Lasso tends to do well if there are a small number of significant parameters and the
others are close to zero
• when only a few predictors actually influence the response

• Ridge works well if there are many large parameters of about the same value
• when most predictors impact the response

• However, in practice, we don't know the true parameter values, so the previous two
points are somewhat theoretical. Just run cross-validation to select the more suited
model for a specific case.

50

Linear regression with non-linear relationships

• E.g. 𝜙 𝑥 = (1, 𝑥, 𝑥2, … , 𝑥𝑑) and 𝑦~𝒩(𝜃⊤𝜙 𝑥 , 𝜎2)
• Features: Last hidden layer of Neural Networks

Figure credit: Kevin Murphy 51

Logistic Regression

52

Linear Discriminative Models

• Discriminative model
• modeling the dependence of unobserved variables on observed ones

• also called conditional models

• Deterministic: 𝑦 = 𝑓𝜃(𝑥)

• Probabilistic: 𝑝𝜃(𝑦|𝑥)

• Linear regression model

53

Linear discriminative model

• Discriminative model
• modeling the dependence of unobserved variables on observed ones

• also called conditional models.

• Deterministic:

• Probabilistic:

• For binary classification
• 𝑝𝜃(𝑦 = 1 | 𝑥)

• 𝑝𝜃(𝑦 = 0 | 𝑥) = 1 − 𝑝𝜃(𝑦 = 1 | 𝑥)

54

Classification problem

• Given:
• A description of an instance 𝑥 ∈ 𝑋

• A fixed set of categories:

• Determine:
• The category of , where 𝑓(𝑥) is a categorization function whose

domain is and whose range is 𝐶

• If the category set binary, i.e. 𝐶 = {0, 1} ({false, true}, {negative, positive})
then it is called binary classification

55

Cross entropy loss

• Cross entropy
• Discrete case: 𝐻 𝑝, 𝑞 = −σ𝑥 𝑝 𝑥 log 𝑞(𝑥)

• Continuous case: 𝐻 𝑝, 𝑞 = 𝑥׬− 𝑝 𝑥 log 𝑞(𝑥)

• Cross entropy loss in classification:
• Red line 𝑝: the ground truth label distribution.

• Blue line 𝑞: the predicted label distribution.

56

Entropy example for binary classification

• Cross entropy: 𝐻 𝑝, 𝑞 = −σ𝑥 𝑝 𝑥 log 𝑞(𝑥)

• Given a data point (𝑥, 0) with prediction probability
𝑞𝜃 𝑦 = 1 𝑥 = 0.4

the cross entropy loss on this point is
𝐿 = −𝑝 𝑦 = 0 𝑥 log 𝑞𝜃 𝑦 = 0 𝑥 − 𝑝 𝑦 = 1 𝑥 log 𝑞𝜃 𝑦 = 1 𝑥

= − log 1 − 0.4 = log
5

3
• What is the cross entropy loss for data point (𝑥, 1) with prediction

probability
𝑞𝜃 𝑦 = 1 𝑥 = 0.3

57

Cross entropy loss for binary classification

• Loss function for data point (𝑥, 𝑦) with prediction model
𝑝𝜃 ∙ 𝑥

is
𝐿 𝑦, 𝑥, 𝑝𝜃
= −1𝑦=1log 𝑝𝜃 1 𝑥) − 1𝑦=0log 𝑝𝜃(0|𝑥)
= −𝑦 log 𝑝𝜃 1 𝑥 − (1 − y)log (1 − 𝑝𝜃(1|𝑥))

58

Binary classification: linear and logistic

• Linear regression:
• Target is predicted by ℎ𝜃 𝑥 = 𝜃⊤𝑥

• Logistic regression

• Target is predicted by ℎ𝜃 𝑥 = 𝜎 𝜃⊤𝑥 =
1

1+ 𝑒−𝜃
⊤𝑥

where

𝜎 𝑧 =
1

1 + 𝑒−𝑧
is the logistic function or the sigmoid function

59

Properties for the sigmoid function

• 𝜎 𝑧 =
1

1+ 𝑒−𝑧

• Bounded in (0,1)

• 𝜎(𝑧) → 1 when 𝑧 → ∞

• 𝜎 𝑧 → 0 when 𝑧 → −∞

• 𝜎′ 𝑧 =
𝑑

𝑑𝑧

1

1+𝑒−𝑧
= − 1 + 𝑒−𝑧 −2 ∙ −𝑒−𝑧

=
1

1 + 𝑒−𝑧
𝑒−𝑧

1 + 𝑒−𝑧

=
1

1 + 𝑒−𝑧
1 −

1

1 + 𝑒−𝑧

= 𝜎 𝑧 1 − 𝜎 𝑧
60

Logistic regression

• Binary classification

• Cross entropy loss function

• Gradient

is also convex in 𝜃

61

Label decision

• Logistic regression provides the probability

• The final label of an instance is decided by setting a threshold ℎ

62

Confusion matrix

• Remember what we have learned about the confusion matrix

• These are the basic metrics to measure the classifier
63

Area Under ROC Curve (AUC)

• A performance measurement for
classification problem at various thresholds
settings

• Tells how much the model is capable of
distinguishing between classes

• The higher, the better

• Receiver Operating Characteristic (ROC)
Curve
• TPR against FPR

• TPR/Recall/Sensitivity =
TP

TP+FN
FPR=1-Specificity=

FP

TN+FP

64

AUC (cont.)

TPR: true positive rate
FPR: false positive rate

• It’s the relationship between TPR and FPR when the
threshold is changed from 0 to 1

• In the top right corner, threshold is 0, and every thing
is predicted to be positive, so both TPR and FPR is 1

• In the bottom left corner, threshold is 1, and every
thing is predicted to be negative, so both TPR and FPR
is 0

• The size of the area under this curve (AUC) is an
important metric to binary classifier

• Perfect classifier get AUC=1 and random classifier get
AUC = 0.5

65

AUC (cont.)

• It considers all possible thresholds.
• Various thresholds result in different true/false

positive rates.
• As you decrease the threshold, you get more true

positives, but also more false positives.

• From a random classifier you can expect as many true
positives as false positives. That’s the dashed line on
the plot. AUC score for the case is 0.5. A score for a
perfect classifier would be 1. Most often you get
something in between.

66

AUC example

67

Support Vector Machine

68

Example

• Both the two solutions can separate the data perfectly, but we prefer
the one on the right, why?

69

Notations for SVM

• Feature vector 𝑥

• Class label 𝑦 ∈ {−1, 1}
• Instead of 0,1

• Parameters
• Intercept 𝑏

• We also drop the convention we had previously of letting 𝑥0 = 1 be an extra coordinate in
the input feature vector

• Feature weight vector 𝑤

• Label prediction
• ℎ𝑤,𝑏 𝑥 = 𝑔 𝑤⊤𝑥 + 𝑏

• 𝑔 𝑧 = ቊ
+1 𝑧 ≥ 0
−1 otherwise

• Directly output the label
• Without estimating probability first (compared with logistic regression)

70

Sign function

Scores of logistic regression

• Let 𝑠 𝑥 = 𝜃0 + 𝜃1𝑥2 + 𝜃2𝑥2, so the probability in logistic regression

is defined as 𝑝𝜃 𝑦 = 1 𝑥 =
1

1+𝑒−𝑠(𝑥)

• Positive prediction means positive scores

• Negative prediction means negative scores

• The absolute value of the score 𝑠 𝑥 is proportional to the distance 𝑥
to the decision boundary 𝜃0 + 𝜃1𝑥2 + 𝜃2𝑥2 = 0

71

Illustration of logistic regression

• The higher score, the larger distance to the decision boundary, the
higher confidence. E.g.

72

𝑠 𝑥𝐴 = 𝜃0 + 𝜃1𝑥1
𝐴 + 𝜃2𝑥2

𝐴 = 7

𝑠 𝑥𝐵 = 𝜃0 + 𝜃1𝑥1
𝐵 + 𝜃2𝑥2

𝐵 = 3

𝑠 𝑥𝐶 = 𝜃0 + 𝜃1𝑥1
𝐶 + 𝜃2𝑥2

𝐶 = 1

𝑠 𝑥 = 0

Geometric margin

• 𝑤 vector is orthogonal to the decision boundary

• Geometric margin is the distance of the point to the decision
boundary
• For positive prediction points

• 𝑥 − 𝛾
𝑤

𝑤
lies on the decision boundary

• 𝑤⊤ 𝑥 − 𝛾
𝑤

𝑤
+ 𝑏 = 0

• Solve it, get

𝛾 =
𝑤⊤𝑥 + 𝑏

𝑤

• In general, 𝛾 = 𝑦 𝑤⊤𝑥 + 𝑏 with 𝑤 = 1

73

Intuition

• Positive when
𝑝𝜃 𝑦 = 1 𝑥 = ℎ𝜃 𝑥 = 𝜎 𝜃⊤𝑥 ≥ 0.5

or
𝜃⊤𝑥 ≥ 0

• Point 𝐴
• Far from decision boundary

• More confident to predict the label 1

• Point 𝐶
• Near decision boundary

• A small change to the decision boundary could
cause prediction to be 𝑦 = 0

74

Decision boundary /
Separating hyperplane

𝜃⊤𝑥 = 0

Hyperplane and margin

• Idea of using 𝑦 ∈ {−1, 1}

75

Objective of an SVM

• Given a training set
𝑆 = 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1, … ,𝑁

margin is the smallest geometric margin
𝛾 = min

𝑖=1,…,𝑛
𝛾𝑖

• Objective is to maximize the margin, or equivalently

min
𝑤,𝑏

1

2
𝑤 2

𝑠. 𝑡. 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1, 𝑖 = 1,… , 𝑁

76

• 𝑤∗, 𝛼∗, 𝛽∗satisfy the KKT conditions:

• If 𝛼𝑖
∗ > 0, then 𝑔𝑖 𝑤

∗ = 0

• The converse is also true
• If some w, a, b satisfy the KKT conditions, then

it is also a solution to the primal and dual
problems

• More details can be found in Boyd’s book
“Convex optimization”

Karush-Kuhn-Tucker (KKT) Conditions

• Suppose
• 𝑓 and 𝑔𝑖’s are convex

• ℎ𝑖’s are affine

• 𝑔𝑖’s are all strictly feasible
• There exists 𝑤 such that 𝑔𝑖 𝑤 < 0 for all 𝑖

• Then there must exist 𝑤∗, 𝛼∗, 𝛽∗

• 𝑤∗ is the solution of the primal problem

• 𝛼∗, 𝛽∗ are the solution of the dual problem

• And the values of the two problems are
equal

77

Rewrite the SVM objective

• The objective of SVM is

min
𝑤,𝑏

1

2
𝑤 2

𝑠. 𝑡. 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1, 𝑖 = 1,… , 𝑁

• Rewrite the constraints as
𝑔𝑖 𝑤 = −𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 + 1 ≤ 0

• It is equivalent to solve the dual problem

• Note that from the KKT dual complementarity condition, 𝛼𝑖 > 0 is
only possible for training samples with 𝑔𝑖 𝑤 = 0

78

Support vectors

• The points with smallest margins

• 𝑔𝑖 𝑤 = 0
• −𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 + 1 = 0

• Positive support vectors
• 𝑤⊤𝑥 + 𝑏 = 1

• Negative support vectors
• 𝑤⊤𝑥 + 𝑏 = −1

• Only support vectors decide the decision
boundary
• Moving or deleting non-support points doesn’t

change the decision boundary
79

Lagrangian of SVM

• SVM objective:

min
𝑤,𝑏

1

2
𝑤 2

𝑔𝑖 𝑤 = −𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 + 1 ≤ 0, 𝑖 = 1,… , 𝑁

• Lagrangian

𝐿 𝑤, 𝑏, 𝛼 =
1

2
𝑤 2 + ෍

𝑖=1

𝑁

𝛼𝑖 1 − 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏

• It is equivalent to solve the dual problem
max
𝛼≥0

min
𝑤,𝑏

𝐿(𝑤, 𝑏, 𝛼)

80

Solve 𝑤∗ and 𝑏∗

• With 𝛼∗

𝑤 =෍

𝑖=1

𝑁

𝛼𝑖𝑦
𝑖𝑥𝑖

• 𝛼𝑖 > 0 only holds on support vectors

• Then

81

Check it!

Predicting values

• 𝑤⊤𝑥 + 𝑏 = σ𝑖=1
𝑁 𝛼𝑖𝑦

𝑖𝑥𝑖
⊤
𝑥 + 𝑏

=෍

𝑖=1

𝑁

𝛼𝑖𝑦
𝑖 𝑥𝑖 , 𝑥 + 𝑏

• Only need to calculate the inner product of 𝑥 with support vectors

• Prediction is
𝑦 = Sign 𝑤⊤𝑥 + 𝑏

82

Regularization motivation

• SVM assumes data is linearly separable
• But some data is linearly non-separable

• SVM is susceptible to outliers

83

Solution – Soft margin

• To make the algorithm work for non-linearly
separable datasets as well as be less sensitive to
outliers

• Add slack variables

min
𝑤,𝑏

1

2
𝑤 2 + 𝐶෍

𝑖=1

𝑁

ξ𝑖

𝑠. 𝑡. 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1 − ξ𝑖 , 𝑖 = 1, … , 𝑁
ξ𝑖 ≥ 0, 𝑖 = 1,… , 𝑁

84

𝐿1 regularization

Example
• Correctly classified points beyond the support line

with ξ = 0

• Correctly classified points on the support line
(support vectors) with ξ = 0

• Correctly classified points inside the margin with
0 < ξ < 1

• The misclassified points inside the margin with
slack 1 < ξ < 2

• The misclassified points outside the margin with
slack ξ > 2

85

• Lagrangian
𝐿 𝑤, 𝑏, ξ, 𝛼, 𝑟

=
1

2
𝑤 2 + 𝐶෍

𝑖=1

𝑁

ξ𝑖 +෍

𝑖=1

𝑁

𝛼𝑖 1 − ξ𝑖 − 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 −෍

𝑖=1

𝑁

𝑟𝑖ξ𝑖

• And the dual problem is
max

𝛼≥0,𝑟≥0
min
𝑤,𝑏,ξ

𝐿 𝑤, 𝑏, ξ, 𝛼, 𝑟

The Lagrangian

86

Revisit the regularized objective

• min
𝑤,𝑏

1

2
𝑤 2 + 𝐶 σ𝑖=1

𝑁 ξ𝑖

𝑠. 𝑡. 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏 ≥ 1 − ξ𝑖 , 𝑖 = 1, … , 𝑁
ξ𝑖 ≥ 0, 𝑖 = 1,… , 𝑁

• min
𝑤,𝑏

1

2
𝑤 2 + 𝐶 σ𝑖=1

𝑁 max 0, 1 − 𝑦𝑖 𝑤⊤𝑥𝑖 + 𝑏

87

SVM hinge loss

SVM hinge loss vs. logistic loss

88

• Logistic loss
• 𝐿 𝑦, 𝑓 𝑥 =

−𝑦 log 𝜎 𝑓 𝑥 −(1 − y) log 1 − 𝜎 𝑓 𝑥

• SVM hinge loss
• 𝐿 𝑦, 𝑓 𝑥 = max 0, 1 − 𝑦𝑓 𝑥

• For 𝑦 = 1

The effect of penalty coefficient

• min
𝑤,𝑏

1

2
𝑤 2 + 𝐶 σ𝑖=1

𝑁 ξ𝑖

• Large 𝐶 will result in narrow margin

89

Non-linearly separable case

• Feature mapping

90

From inner product to kernel function

• SVM

𝑊 𝛼 =෍

𝑖=1

𝑁

𝛼𝑖 −
1

2
෍

𝑖=1

𝑁

෍

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝑥𝑗

⊤
𝑥𝑖

• Kernel

𝑊 𝛼 =෍

𝑖=1

𝑁

𝛼𝑖 −
1

2
෍

𝑖=1

𝑁

෍

𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦
𝑖𝑦𝑗𝐾 𝑥𝑖 , 𝑥𝑗

• 𝐾 𝑥𝑖 , 𝑥𝑗 = 𝛷 𝑥𝑖 , 𝛷 𝑥𝑗

• Kernel trick:
• For many cases, only 𝐾 𝑥𝑖 , 𝑥𝑗 are needed, so we can only define these 𝐾𝑖𝑗 without

explicitly defining 𝛷

• For prediction, only need 𝐾 𝑥𝑖 , 𝑥 on support vectors
91

Property

• If 𝐾 is a valid kernel (that is, is defined
by some feature mapping 𝛷), then
the kernel matrix 𝐾 = 𝐾𝑖𝑗 𝑖𝑗

∈

ℝ𝑁×𝑁 is symmetric positive semi-
definite

• Symmetric
• 𝐾𝑖𝑗 = 𝐾 𝑥𝑖 , 𝑥𝑗 = 𝛷 𝑥𝑖 , 𝛷 𝑥𝑗 =
𝛷 𝑥𝑗 , 𝛷 𝑥𝑖 = 𝐾 𝑥𝑗 , 𝑥𝑖 = 𝐾𝑗𝑖

92

• Positive semi-definite

Examples on kernels

• Gaussian kernel

• Radial basis function (RBF) kernel

• What is the feature mapping 𝛷? (Hint: by using Taylor series)

• Simple polynomial kernel

• Cosine similarity kernel

• Sigmoid kernel

93

Pros and cons of SVM

• Advantages:
• The solution, which is based on convex optimization, is globally optimal
• Can be applied to both linear/non-linear classification problems
• Can be applied to high-dimensional data

• since the complexity of the data set mainly depends on the support vectors

• Complete theoretical guarantee
• Compared with deep learning

• Disadvantages:
• The number of parameters 𝛼 is number of samples, thus hard to apply to

large-scale problems
• SMO can ease the problem a bit

• Mainly applies to binary classification problems
• For multi-classification problems, can solve several binary classification problems, but

might face the problem of imbalanced data 94

Neural Networks

95

Perceptron

• Inspired by the biological neuron among humans and animals, researchers
build a simple model called Perceptron

• It receives signals 𝑥𝑖’s, multiplies them with different weights 𝑤𝑖, and
outputs the sum of the weighted signals after an activation function, step
function

96

Activation functions

• Sigmoid: 𝜎 𝑧 =
1

1+𝑒−𝑧

• Tanh: tanh 𝑧 =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧

• ReLU (Rectified Linear Unity):
ReLU 𝑧 = max 0, 𝑧

97

Most popular in fully
connected neural network

Most popular in
deep learning

Activation function values and derivatives

98

• Its derivative
𝜎′ 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

• Output range 0,1

• Motivated by biological neurons
and can be interpreted as the
probability of an artificial
neuron “firing” given its inputs

• However, saturated neurons
make value vanished (why?)

• 𝑓 𝑓 𝑓 ⋯

• 𝑓 0,1 ⊆ 0.5, 0.732

• 𝑓 0.5, 0.732 ⊆ 0.622,0.676

Sigmoid activation function

• Sigmoid

𝜎 𝑧 =
1

1 + 𝑒−𝑧

99

Tanh activation function

• Tanh function

tanh 𝑧 =
sinh(𝑧)

cosh(𝑧)
=

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

100

• Its derivative
tanh ′ 𝑧 = 1 − tanh2(𝑧)

• Output range −1,1

• Thus strongly negative inputs to
the tanh will map to negative
outputs

• Only zero-valued inputs are
mapped to near-zero outputs

• These properties make the
network less likely to get “stuck”
during training

ReLU activation function

• ReLU (Rectified linear unity)
function

ReLU 𝑧 = max 0, 𝑧

101

• Its derivative

ReLU′ 𝑧 = ቊ
1 if 𝑧 > 0
0 if 𝑧 ≤ 0

• ReLU can be approximated by softplus function

• ReLU’s gradient doesn't vanish as x increases

• Speed up training of neural networks
• Since the gradient computation is very simple

• The computational step is simple, no exponentials, no
multiplication or division operations (compared to others)

• The gradient on positive portion is larger than
sigmoid or tanh functions
• Update more rapidly

• The left “dead neuron” part can be ameliorated by Leaky
ReLU

ReLU activation function (cont.)

• ReLU function
ReLU 𝑧 = max 0, 𝑧

102

• The only non-linearity comes from the path
selection with individual neurons being active or
not

• It allows sparse representations:
• for a given input only a subset of neurons are active

Sparse propagation of activations and gradients

Universal approximation theorem

• A feed-forward network with a single hidden layer containing a finite
number of neurons can approximate continuous functions

103

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal
approximators." Neural networks 2.5 (1989): 359-366

1-20-1 NN approximates
a noisy sine function

Single / Multiple layers of calculation

• Single layer function
𝑓𝜃 𝑥 = 𝜎 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2

• Multiple layer function
• ℎ1 𝑥 = 𝜎 𝜃0

1 + 𝜃1
1𝑥1 + 𝜃2

1𝑥2
• ℎ2 𝑥 = 𝜎 𝜃0

2 + 𝜃1
2𝑥1 + 𝜃2

2𝑥2
• 𝑓𝜃 ℎ = 𝜎 𝜃0 + 𝜃1ℎ1 + 𝜃2ℎ2

104

𝑥1 𝑥2

𝑓𝜃

𝑥1 𝑥2

𝑓𝜃

ℎ2ℎ1

Gradient interpretation

• Gradient is the vector (the red one) along which the value of the
function increases most rapidly. Thus its opposite direction is where
the value decreases most rapidly.

105

Gradient descent

• To find a (local) minimum of a function using gradient descent, one
takes steps proportional to the negative of the gradient (or an
approximation) of the function at the current point

• For a smooth function 𝑓(𝑥),
𝜕𝑓

𝜕𝑥
is the direction that 𝑓 increases most

rapidly. So we apply

𝑥𝑡+1 = 𝑥𝑡 − 𝜂
𝜕𝑓

𝜕𝑥
(𝑥𝑡)

until 𝑥 converges

106

Feed forward vs. Backpropagation

107

Make a prediction

108

𝑡1

𝑡𝑘

Make a prediction (cont.)

109

𝑡1

𝑡𝑘

Make a prediction (cont.)

110

𝑡1

𝑡𝑘

Backpropagation
• Assume all the activation functions are sigmoid

• Error function 𝐸 =
1

2
σ𝑘 𝑦𝑘 − 𝑡𝑘

2

•
𝜕𝐸

𝜕𝑦𝑘
= 𝑦𝑘 − 𝑡𝑘

•
𝜕𝑦𝑘

𝜕𝑤
𝑘,𝑗
(2) = 𝑓(2)

′ 𝑛𝑒𝑡𝑘
(2)

ℎ𝑗
(1)

= 𝑦𝑘 1 − 𝑦𝑘 ℎ𝑗
(1)

• ⇒
𝜕𝐸

𝜕𝑤
𝑘,𝑗
(2) = − 𝑡𝑘 − 𝑦𝑘 𝑦𝑘 1 − 𝑦𝑘 ℎ𝑗

(1)

• ⇒ 𝑤𝑘,𝑗
(2)

← 𝑤𝑘,𝑗
(2)

+ 𝜂𝛿𝑘
(2)
ℎ𝑗
(1)

111

𝛿𝑘
(2)

𝑡1

𝑡𝑘

Output of unit 𝑗

Backpropagation (cont.)
• Error function 𝐸 =

1

2
σ𝑘 𝑦𝑘 − 𝑡𝑘

2

•
𝜕𝐸

𝜕𝑦𝑘
= 𝑦𝑘 − 𝑡𝑘

• 𝛿𝑘
(2)

= 𝑡𝑘 − 𝑦𝑘 𝑦𝑘 1 − 𝑦𝑘

• ⇒ 𝑤𝑘,𝑗
(2)

← 𝑤𝑘,𝑗
(2)

+ 𝜂𝛿𝑘
(2)
ℎ𝑗
(1)

•
𝜕𝑦𝑘

𝜕ℎ𝑗
(1) = 𝑦𝑘 1 − 𝑦𝑘 𝑤𝑘,𝑗

(2)

•
𝜕ℎ𝑗

(1)

𝜕𝑤𝑗,𝑚
(1) = 𝑓(1)

′ 𝑛𝑒𝑡𝑗
(1)

𝑥𝑚 = ℎ𝑗
(1)

1 − ℎ𝑗
(1)

𝑥𝑚

•
𝜕𝐸

𝜕𝑤
𝑗,𝑚
(1) = −ℎ𝑗

(1)
1 − ℎ𝑗

(1)
σ𝑘𝑤𝑘,𝑗

2
𝑡𝑘 − 𝑦𝑘 𝑦𝑘 1 − 𝑦𝑘 𝑥𝑚

= −ℎ𝑗
(1)

1 − ℎ𝑗
(1)

෍

𝑘

𝑤𝑘,𝑗
2
𝛿𝑘
(2)

𝑥𝑚

• ⇒ 𝑤𝑗,𝑚
(1)

← 𝑤𝑗,𝑚
(1)

+ 𝜂𝛿𝑗
(1)
𝑥𝑚

112

𝛿𝑗
(1)

𝑡1

𝑡𝑘

Backpropagation algorithms

• Activation function: sigmoid

Initialize all weights to small random numbers

Do until convergence

• For each training example:
1. Input it to the network and compute the network output
2. For each output unit 𝑘, 𝑜𝑘 is the output of unit 𝑘

𝛿𝑘 ← 𝑜𝑘 1 − 𝑜𝑘 𝑡𝑘 − 𝑜𝑘
3. For each hidden unit 𝑗, 𝑜𝑗 is the output of unit 𝑗

𝛿𝑗 ← 𝑜𝑗 1 − 𝑜𝑗 ෍

𝑘∈𝑛𝑒𝑥𝑡 𝑙𝑎𝑦𝑒𝑟

𝑤𝑘,𝑗𝛿𝑘

4. Update each network weight, where 𝑥𝑖 is the output for unit 𝑖

𝑤𝑗,𝑖 ← 𝑤𝑗,𝑖 + 𝜂𝛿𝑗𝑥𝑖
113

• Error function 𝐸 =
1

2
σ𝑘 𝑦𝑘 − 𝑡𝑘

2

• 𝛿𝑘
(2)

= 𝑡𝑘 − 𝑦𝑘 𝑦𝑘 1 − 𝑦𝑘

• ⇒ 𝑤𝑘,𝑗
(2)

← 𝑤𝑘,𝑗
(2)

+ 𝜂𝛿𝑘
(2)
ℎ𝑗
(1)

• 𝛿𝑗
(1)

= ℎ𝑗
(1)

1 − ℎ𝑗
(1) σ𝑘𝑤𝑘,𝑗

2
𝛿𝑘
(2)

• ⇒ 𝑤𝑗,𝑚
(1)

← 𝑤𝑗,𝑚
(1)

+ 𝜂𝛿𝑗
(1)
𝑥𝑚

See the backpropagation demo

• https://google-developers.appspot.com/machine-learning/crash-
course/backprop-scroll/

114

https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/

Formula example for backpropagation

115

Formula example for backpropagation (cont.)

116

Calculation example

• Consider the simple network below:

• Assume that the neurons have sigmoid activation function and
• Perform a forward pass on the network and find the predicted output

• Perform a reverse pass (training) once (target = 0.5) with 𝜂 = 1

• Perform a further forward pass and comment on the result

117

Calculation example (cont.)

118

• For each output unit 𝑘, 𝑜𝑘 is the output
of unit 𝑘

𝛿𝑘 ← 𝑜𝑘 1 − 𝑜𝑘 𝑡𝑘 − 𝑜𝑘

• For each hidden unit 𝑗, 𝑜𝑗 is the output of
unit 𝑗

𝛿𝑗 ← 𝑜𝑗 1 − 𝑜𝑗 ෍

𝑘∈𝑛𝑒𝑥𝑡 𝑙𝑎𝑦𝑒𝑟

𝑤𝑘,𝑗𝛿𝑘

• Update each network weight, where 𝑥𝑖 is
the input for unit 𝑗

𝑤𝑗,𝑖 ← 𝑤𝑗,𝑖 + 𝜂𝛿𝑗𝑥𝑖

Calculation example (cont.)

• Answer (i)
• Input to top neuron = 0.35 × 0.1 + 0.9 × 0.8 = 0.755. Out=0.68
• Input to bottom neuron = 0.35 × 0.4 + 0.9 × 0.6 = 0.68. Out= 0.6637
• Input to final neuron = 0.3 × 0.68 + 0.9 × 0.6637 = 0.80133. Out= 0.69

• (ii) It is both OK to use new or old weights when computing 𝛿𝑗 for hidden units

• Output error 𝛿 = 𝑡 − 𝑜 𝑜 1 − 𝑜 = 0.5 − 0.69 × 0.69 × 1 − 0.69 = −0.0406
• Error for top hidden neuron 𝛿1 = 0.68 × 1 − 0.68 × 0.3 × −0.0406 = −0.00265
• Error for top hidden neuron 𝛿2 = 0.6637 × 1 − 0.6637 × 0.9 × −0.0406 = −0.008156
• New weights for the output layer

• 𝑤𝑜1 = 0.3 − 0.0406 × 0.68 = 0.272392

• 𝑤𝑜2 = 0.9 − 0.0406 × 0.6637 = 0.87305

• New weights for the hidden layer

• 𝑤1𝐴 = 0.1 − 0.00265 × 0.35 = 0.0991

• 𝑤1𝐵 = 0.8 − 0.00265 × 0.9 = 0.7976

• 𝑤2𝐴 = 0.4 − 0.008156 × 0.35 = 0.3971

• 𝑤2𝐵 = 0.6 − 0.008156 × 0.9 = 0.5927

• (iii)
• Input to top neuron = 0.35 × 0.0991 + 0.9 × 0.7976 = 0.7525. Out=0.6797
• Input to bottom neuron = 0.35 × 0.3971 + 0.9 × 0.5927 = 0.6724. Out= 0.662
• Input to final neuron = 0.272392 × 0.6797 + 0.87305 × 0.662 = 0.7631. Out= 0.682
• New error is −0.182, which is reduced compared to old error −0.19

119

• For each output unit 𝑘, 𝑜𝑘 is the output
of unit 𝑘

𝛿𝑘 ← 𝑜𝑘 1 − 𝑜𝑘 𝑡𝑘 − 𝑜𝑘

• For each hidden unit 𝑗, 𝑜𝑗 is the output of
unit 𝑗

𝛿𝑗 ← 𝑜𝑗 1 − 𝑜𝑗 ෍

𝑘∈𝑛𝑒𝑥𝑡 𝑙𝑎𝑦𝑒𝑟

𝑤𝑘,𝑗𝛿𝑘

• Update each network weight, where 𝑥𝑖 is
the input for unit 𝑗

𝑤𝑗,𝑖 ← 𝑤𝑗,𝑖 + 𝜂𝛿𝑗𝑥𝑖

Convergence of backpropagation

• Gradient descent to some local minimum
• Perhaps not global minimum

• Add momentum

• Stochastic gradient descent

• Train multiple nets with different initial weights

• Nature of convergence
• Initialize weights near zero

• Therefore, initial networks near-linear

• Increasingly approximate non-linear functions as training progresses

120

Two examples of overfitting

121

Avoid overfitting

• Penalize large weights:

• Train on target slopes as well as values:

• Weight sharing
• Reduce total number of weights

• Using structures, like convolutional neural networks

• Early stopping

• Dropout 122

Convolutional Neural Networks

123

Previous pipeline of pattern recognition

• The black box in a traditional pattern recognition problem

124

Hand engineered features

• Feature is of critical importance in machine learning, and there are
many things to consider when design the features manually:
• How to design a feature?

• What is the best feature?

• Time and money cost in feature engineering.

• Question: Can feature be learned automatically?

125

Convolution neural networks

• Is an answer of an end-to-end recognition system

• Contains the following layers with flexible order and repetitions
• Convolution layer

• Activation layer (ReLU)

• Pooling layer

• Example of CNN:

126

Convolution in neural networks

• Given an input matrix (e.g. an image)

• Use a small matrix (called filter or
kernel) to screening the input at
every position of the input matrix

• Put the convolution results at
corresponding positions

127

An animation example

128

Advantage – sparse connections

• Less computing burden

• In fully connected layer (top), every 𝑠 is linked
to every input 𝑥, so there are 5 × 5 = 25
connecting edges

• In the convolution layer (bottom) with filter
width 3, e.g. 𝑠2 is a weighted sum of
𝑥1, 𝑥2, 𝑥3, so there is no weight connecting 𝑠2
and 𝑥4, 𝑥5. In this example, there are 13
connecting edges

129

Advantage – weight sharing

• When moving the filter, we don’t change the
weights inside the filter and these weights are
shared at different connecting edges

• In fully connected layer (top), there are 25
connecting edges. The weights on different edges
are different parameters.

• In convolution layer (bottom), there are 13
connecting edges. But since

𝑠2 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3
𝑠3 = 𝑤1𝑥2 +𝑤2𝑥3 +𝑤3𝑥4

the number of different weights is even smaller. In
this case, there are 3 different weights (just the
size of the filter!). E.g. the weights on the black
arrows are the same.

130

Interpretation of convolution

• Convolution can be used to find an
area with particular patterns!

• Example:
• The filter in the left represents the

edge in the right, which is the back of
a mouse

131

Interpretation of convolution (cont.)

• When the filter moves to the back of the mouse, the convolution
operation will generate a very large value

132

Interpretation of convolution (cont.)

• When the filter moves to other positions, it will generate small values

133

Visualization

• Train the InceptionV3 model (by Google) on the ImageNet dataset

• Then test it on a flower image from the test dataset
• Example input image:

• Then let’s look at the outputs of different convolutional layers

134

Visualization (cont.)

• The outputs of the filters in the first layer

135

Visualization (cont.)

• The outputs of the filters in the fourth layer

136

Visualization (cont.)

• The outputs of the filters in the ninth layer

137

Visualization (cont.)

• Summary
• The filters in the deeper layers characterize more abstract patterns

• Layers that are deeper in the network visualize more training data specific
features

• While the earlier layers tend to visualize general patterns like edges, texture,
background

138

1 × 1 convolution

• Here we introduce a special filter, which as a size of 1 × 1

• The 1 × 1 convolution cannot detect edges with any shape, so is it
really useful? Or is it redundant?

139

Convolution with large kernel Convolution with 1*1 kernel

1 × 1 convolution (cont.)
• The 1 × 1 convolution is very useful as it can reduce the computation

complexity in CNN!

• Help reduce the number of channels

• In the example above, the size of the input data is reduced from 4 × 4 × 5
to 4 × 4 × 3

• Usually we assume the depth of the filter is the same with depth of data
140

1 × 1 convolution (cont.)

• 1 × 1 convolution filter is usually followed by 3 × 3 or other bigger
filters. In this way, the computational complexity is greatly reduced

• This architecture is used in Google’s inception model

141

Filter depth

142

Convolve the filter with the image i.e.
“slide over the image spatially, computing
dot products”

filters always extend the full depth of the input
volume

Stride

• The distance that the filter is moved in each step

• Examples of stride=1 and stride=2

143

Padding

• A solution to the problem of data shrinking

• Data shrinking: as convolution can only happen within the border of
the input data, the size of the data will become smaller as the
network becomes deeper

• 1D Example:
• suppose the filter width is 6,

the data will shrink 5 pixel each layer

144

Padding (cont.)
• Add numbers (usually zero, called zero padding) around the input

data to make sure that the size of the output data is the same as that
of the input data

• Left padding = 3, right padding = 2

• Usually left padding + right padding = filter width – 1

145

Example

• Input 7x7 (white area)

• 3x3 filter, applied with stride 1

• pad with 1 pixel border (dark area)

• => what is the size of the output?

146

Example (cont.)

• Input 7x7 (white area)

• 3x3 filter, applied with stride 1

• pad with 1 pixel border (dark area)

• => what is the size of the output?

• 7x7 output!

147

Example (cont.)

• Input 7x7 (white area)

• 3x3 filter, applied with stride 1

• pad with 1 pixel border (dark area)

• => what is the size of the output?

• 7x7 output!

• In general, convolution layers with stride 1,
filters of size FxF, and zero-padding with (F-1)/2.
(will preserve size spatially)

• e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 => zero pad with 3 148

Example 2

• Input volume: 32 × 32 × 3

• 10 5 × 5 filters with stride 1, pad 2

• Output volume size: ?

149

Example 2 (cont.)

• Input volume: 32 × 32 × 3

• 10 5 × 5 filters with stride 1, pad 2

• Output volume size: ?

• Filter size 5, pad = 𝐹 − 1 /2,
so keep the size 32 × 32 spatially

• 10 5 × 5 filters means 10 5 × 5 × 3 filters

• So 32 × 32 × 10

150

Pooling layer

• Make the representations denser and more manageable

• Operate over each activation map independently:

151

Example of pooling layer

• Pooling of size 2 × 2 with stride 2

• Most common pooling operations are max and average

152

ReLU activation function

• ReLU (Rectified linear unity)
function

ReLU 𝑧 = max 0, 𝑧

153

• Its derivative

ReLU′ 𝑧 = ቊ
1 if 𝑧 > 0
0 if 𝑧 ≤ 0

• ReLU can be approximated by softplus function

• ReLU’s gradient doesn't vanish as x increases

• Speed up training of neural networks
• Since the gradient computation is very simple

• The computational step is simple, no exponentials, no
multiplication or division operations (compared to others)

• The gradient on positive portion is larger than
sigmoid or tanh functions
• Update more rapidly

• The left “dead neuron” part can be ameliorated by Leaky
ReLU

A typical CNN structure

• Convolution/Activation (ReLU)/Pooling layers appear in flexible order
and flexible repetitions

154

Training Techniques

155

Dropout

• Dropout randomly ‘drops’ units from a layer on each training step,
creating ‘sub-architectures’ within the model

• It can be viewed as a type of sampling a small network within a large
network

• Prevent neural networks from overfitting

156Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal of Machine Learning
Research 15.1 (2014): 1929-1958.

Dropout (cont.)

• Forces the network to have a redundant representation

• Increase robustness in prediction power

157

Weights initialization

• If the weights in a network start too small,
• then the signal shrinks as it passes through each layer until it’s too tiny to be

useful

• If the weights in a network start too large,
• then the signal grows as it passes through each layer until it’s too massive to

be useful

158

Weights initialization (cont.)

• All zero initialization

• Small random numbers

• Draw weights from a Gaussian distribution

• with the standard deviation of
2

𝑛

• 𝑛 is the number of inputs to the ending neuron

159

Batch normalization

• Batch training:
• Given a set of data, each time a small portion of data are put into the model

for training

• Extreme example
• Suppose we are going to learn some pattern of people, and the input data are

people’s weights and heights

• Unluckily, women and men are divided into two batches when we randomly
split the data

• As the weights and heights of women are very different from these of men,
the neural network have to make huge changes to the weight when we switch
the batch during training, which will cause slow convergence or even
divergence

160

Batch normalization (cont.)

• The problem in the example is called Internal Covariate Shift
• The solution to Internal Covariate Shift is batch normalization

• Suppose 𝑍𝑗
(𝑖)

is the ith input for the jth neuron in the input layer

• Or normalize the whole input layer together

161

Batch normalization (cont.)

• 2D example

162

Example of batch normalization

• Without batch normalization
• Slow convergence and fluctuation

163

AlexNet [Krizhevsky et al. 2012]

• AlexNet:

164

Input: 227x227x3 images
First layer (CONV1): 96 11x11 kernels applied at stride 4
Q: what is the output volume size?

AlexNet (cont.)

• AlexNet:

165

Input: 227x227x3 images
First layer (CONV1): 96 11x11 kernels applied at stride 4
Q: what is the output volume size? Hint: (227-11)/4+1 = 55 [55x55x96]

AlexNet (cont.)

• AlexNet:

166

Input: 227x227x3 images
First layer (CONV1): 96 11x11 kernels applied at stride 4
Q: what is the output volume size? Hint: (227-11)/4+1 = 55 [55x55x96]
Q: What is the total number of parameters in this layer?

AlexNet (cont.)

• AlexNet:

167

Input: 227x227x3 images
First layer (CONV1): 96 11x11 kernels applied at stride 4
Q: what is the output volume size? Hint: (227-11)/4+1 = 55 [55x55x96]
Q: What is the total number of parameters in this layer? (11*11*3)*96 = 35K

Computation example

168

Recurrent Neural Networks

169

RNN

170

RNN (cont.)

• 𝑥𝑡 is the input at time 𝑡

• 𝑠𝑡 is the hidden state at time 𝑡
• It is the “memory” of the network

• Is calculated based on previous hidden state and the input at the current step
𝑠𝑡 = 𝑓 𝑈𝑥𝑡 +𝑊𝑠𝑡−1

where 𝑓 is nonlinear activation function, such as tanh, ReLU

• 𝑜𝑡 is the output at time 𝑡
• E.g. If we want to predict the next word in a sentence, 𝑜𝑡 is a vector of

probabilities over certain vocabulary

171

RNN (cont.)

• 𝑠𝑡 is the “memory” at time 𝑡

• 𝑜𝑡 is based on memory at time 𝑡

• RNN share weights 𝑈 and W
• Unlike traditional NN
• Greatly reduce the total number of parameters we need to learn

• The output at each time step might be unnecessary
• E.g. When predicting the sentiment of a sentence we may only care about the

final output, not the sentiment after each word

• We may not need inputs at each time step

• Main feature:
• Is the hidden state, which captures some information about a sequence

172

Recall RNN

173

Computational graph of RNN

• Re-use the same weight matrix at every time-step

174

Different RNNs

175

Example 1: Character-level language model

• Given previous words/characters,
predict the next

• Vocabulary: [h, e, l, o]

• Example of training sequence:

“Hello”

176

Example 1: Character-level language model

• Given previous words/characters,
predict the next

• Vocabulary: [h, e, l, o]

• Example of training sequence:

“Hello”

177

Example 1: Character-level language model

• Given previous words/characters,
predict the next

• Vocabulary: [h, e, l, o]

• Example of training sequence:

“Hello”

178

Example 1: Character-level language model

• Given previous words/characters,
predict the next

• Vocabulary: [h, e, l, o]

• Example of training sequence:

“Hello”

• At test time, sample characters one
at a time, feed back to model

179

Example 3: Image captioning

• Using RNN to explain the content in an Image

180

Remove the last two layers in CNN

Example 3: Image captioning (cont.)

181

Preparing the initial input for RNN

Example 3: Image captioning (cont.)

182Add a new item to connect CNN to RNN

Example 3: Image captioning (cont.)

183

Example 3: Image captioning (cont.)

184

Example 3: Image captioning (cont.)

185

Example 3: Image captioning (cont.)

186

Example 3: Image captioning (cont.)

187

Training

• Still use backpropagation

• But now weights are shared by all time steps

• Backpropagation Through Time (BPTT)
• E.g., in order to calculate the gradient at 𝑡 = 4, we would need to

backpropagate 3 steps and sum up the gradients

•

• Loss, by cross entropy
• 𝑦𝑡 is the correct word at time 𝑡

• ො𝑦𝑡 is prediction

188

Backpropagation Through Time (BPTT)

• Recall that our goal is to calculate the gradients of the error with
respect to parameters 𝑈, 𝑉,𝑊

• Also the gradients sum over time
𝜕𝐸

𝜕𝑊
= σ𝑡

𝜕𝐸𝑡

𝜕𝑊

• E.g.
𝜕𝐸3

𝜕𝑊
=

𝜕𝐸3

𝜕 ො𝑦3

𝜕 ො𝑦3

𝜕𝑠3

𝜕𝑠3

𝜕𝑊
+

𝜕𝑠3

𝜕𝑠2

𝜕𝑠2

𝜕𝑊
+⋯

• 𝑠3 = tanh 𝑈𝑥𝑡 +𝑊𝑠2

• So to get gradients of time 𝑡 = 3, we need to
backpropagate gradients to 𝑡 = 0

189

Summary of BPTT

• It is just backpropagation on the unrolled RNN by summing
over all gradients for 𝑊 and 𝑈 at each time step

• The vanishing gradient problem

•
𝜕𝐸3

𝜕𝑊
=

𝜕𝐸3

𝜕 ො𝑦3

𝜕 ො𝑦3

𝜕𝑠3

𝜕𝑠3

𝜕𝑊
+

𝜕𝑠3

𝜕𝑠2

𝜕𝑠2

𝜕𝑊
+⋯

• This Jacobian matrix (derivative w.r.t. a vector) has 2-norm less than 1
• As an intuition, the derivative of tanh is bounded by 1

• Thus, with small values in multiple matrix multiplications, the gradient values are
shrinking exponentially fast, eventually vanishing completely after a few time steps

• Gradient contributions from “far away” steps become zero
• You end up not learning long-range dependencies
• Not exclusive to RNNs. It’s just that RNNs tend to be very deep (as sentence length)

190

Demo of RNN vs LSTM: Vanishing gradients

191

• RNN vs LSTM gradients on the input weight matrix https://imgur.com/gallery/vaNahKE

• Error is generated at 128th step and propagated back. No error from other steps

• Initial weights sampled from Normal Distribution in (-0.1, 0.1)

https://imgur.com/gallery/vaNahKE

The problem of long-term dependencies

• One of the appeals of RNNs is the idea that they might be able to
connect previous information to the present task, such as using
previous video frames might inform the understanding of the present
frame

• RNN usually works well for recent information
• E.g. The clouds are in the sky.

• But might work worse for further back context
• E.g. I grew up in France… I speak fluent French.

192

Long short-term memory (LSTM)

• Hochreiter & Schmidhuber [1997]

• A variant of RNN, capable of learning long-term dependencies

• Can remember information for long periods of time

193

Remember the architecture of RNN cells, we will make many changes on it

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM at a glance

194

LSTM

• 𝐶𝑡 is the cell state
• Horizontal line running through the top of the diagram

• Like a conveyer

• Run straight down the entire chain, with only some minor linear interactions

• LSTM uses gates to carefully remove or add information to the cell state

195

LSTM (cont.)

• Three gates are governed by sigmoid units

• Describing how much of each component should be let through

• “let nothing through” (zero value)/“let everything through” (one value)

196

LSTM (cont.)

• The first gate is forget gate layer
• Decide what information we’re going to throw away from the cell state

• Output a number in 0,1 for each number in the cell state

• 1/0: completely keep/remove this

197

LSTM (cont.)

• Next is to decide what new information we’re going to store in the
cell state
• The sigmoid layer is the input gate layer, deciding which values we’ll update

• The tanh layer creates a vector of new candidate values ሚ𝐶𝑡 that should be
added to the state

198

LSTM (cont.)

• Multiply the old state by 𝑓𝑡
• Forgetting the things from previous state

• Add new candidate values

• Update cell state

199

LSTM (cont.)

• Last decide the output ℎ𝑡
• Filtered (tanh) version of the cell state

• The sigmoid layer decides what parts of the cell state we’re going to output
ℎ𝑡−1, 𝑥𝑡 are like context

200

LSTM hyperparameter tuning

• Watch out for overfitting

• Regularization helps: regularization methods include L1, L2, and
dropout among others.

• The larger the network, the more powerful, but also easier to overfit.
Don’t want to try to learn a million parameters from 10,000 examples
• parameters > examples = trouble

• More data is usually better

• Train over multiple epochs (complete passes through the dataset)

• The learning rate is the single most important hyper parameter

201

