Review for the Midterm

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University
https://shuaili8.github.io

https://shuaili8.github.io/Teaching/VE445/index.html

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/VE445/index.html

Exam code

* Exam on Oct 29 8:00-9:40 at Dong Xia Yuan 113 (lecture classroom)
* Finish the exam paper by yourself

e Allowed:
e Calculator, watch (not smart)

* Not allowed:
* Books, materials, cheat sheet, ...
* Phones, any smart device

* No entering after 8:25
* Early submission period: 8:30--9:25

Coverage of midterm

* Basics * Unsupervised learning
* Supervised learning * K-means, PCA, EM, GMM
* Linear Regression * Reinforcement learning
* Logistic regression * Multi-armed bandits
* SVM and Kernel methods * MDP
* Decision Tree * Bellman equations
* Deep learning * Q-learning
 Neural Networks Learning theory
* Backpropagation * PAC, VC-dimension, bias-variance
e Convolutional Neural Network decomposition

e Recurrent Neural Network

Machine Learning Categories

* Unsupervised learning
* No labeled data

* Semi-supervised learning
* Use labeled data and unlabeled data to predict on unlabeled/unseen points

* Reinforcement learning
* Sequential prediction and receiving feedbacks

Supervised learning example

Training set

Label
f> X
m New instance

STEP|

Provide the machine learning algorithm categorized or
“labeled” input and output data from to learn

Label

“CATS"

How Supervised Machine Learning Works

d v

MACHINE

STEP 2

Feed the machine new, unlabeled information to see if it tags
new data appropriately. If not, continue refining the algorithm

d v
“NOT CATS”

MACHINE '@m ’6‘

TYPES OF PROBLEMS TO WHICH IT'S SUITED

CLASSIFICATION

Sorting items
into categories

REGRESSION

Identifying real values
(dollars, weight, etc.)

Regression example

Linear Linear Mo linear relationship

Copyright 2014, Laerd Statistics.

Model Evaluations

Classification -- Model evaluations

e Confusion Matrix
* TP — True Positive ; FP — False Positive
* FN — False Negative; TN — True Negative

_ Predicted Class

Actual Class =Yes Class = No
Class Class = Yes h (FN)
Class = No c (FP

a+ d P + IN

Accuracy =

a+btctd TP+TIN + FP+ IV

Classification -- Model evaluations

* Limitation of Accuracy

* Consider a 2-class problem
* Number of Class 0 examples = 9990
* Number of Class 1 examples = 10

* If a “stupid” model predicts everything to be class 0, accuracy is 9990/10000 =
99.9 %

* The accuracy is misleading because the model does not detect any
example in class 1

Classification -- Model evaluations

e Cost-sensitive measures

Predicted Class

Actual CIa;Q: Yes Class = No
Class Class = Yes a (TP) b (FN) >
Class = No c (FP) d (TN)
.. 1P a
Precision (p) = =
TP + FP a+c
1P a : "
Recall (1") — — Harmonic mean of Precision and Recall
TP + FN a + (Why not just average?)
21D 2a

F — measure (F) = =
r+p 2a+ b +c

11

Example

* Given 30 human photographs, a computer predicts 19 to be male, 11
to be female. Among the 19 male predictions, 3 predictions are not
correct. Among the 11 female predictions, 1 prediction is not correct.

_ Predicted Class

Actual Male Female
Class Male a=TP=16 b=FN=1
Female c=FP=3 d=TN =10

12

Example
| predictedClass

Actual Male Female
Class Male a=TP=16 b=FN=1
Female c=FP=3 d=TN =10

e Accuracy =(16+10) /(16 +3 + 1 + 10) = 0.867

* Precision =16/ (16 + 3) =0.842

* Recall=16 /(16 + 1) =0.941

* F-measure =2 (0.842)(0.941) / (0.842 + 0.941)
= 0.889

13

Model Selections

Minimize the error rate?

* Given a dataset S Err_ér rite - fg A Error:te - %B

+ Error rate = —o LIrOTS -_""i;..,\'.: . -_'._ ..
of Total Samples _ -o _ . ®

* Accuracy =1 - Error rate m "W . "

https://malware.news/uploads/default/original/3X/6/d/6df12e50b7f97cdba92697cel64cbed4a5502a349.png

https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/0verfitting.sve /1200px-Overfitting.svg.png

15

https://malware.news/uploads/default/original/3X/6/d/6df12e50b7f97cdba92697ce164cbe4a5502a349.png
https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Overfitting.svg/1200px-Overfitting.svg.png

Fitting

Under-fitting

(too simple to
explain the variance)

Appropirate-fitting

Over-fitting

(forcefitting--too
good to be true) HG

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190523171258/overfitting_2.png

16

Split training and test

 Split dataset to training and test

* Train models on training dataset

* The evaluation of the model is the
error on test dataset

* Might overfit the training dataset

‘ Data |

L

‘ Training ‘ Test |

17

Cross validation

Training set

1stiteration

2"d jteration

3rd jteration

Training folds Test fold
A
[
—> E;
—> E;_.
—> E;
—> Elo

10t iteration -

18

Bias

Bias = E[0] — 6.

250 A

200 -

150 A

100 A

memmsm true function f(x)
o
A
=

train set 1
train set 2
train set 3

19

Var(9) = E[(E[0] — 6)2].

Variance
mmmm true function f(x)
250 1 ® trainsetl
A trainset?2
200 - B trainset3
150 -
High variance
100 -
50 -
O -

Underfitting and overfitting

v y AN
1% o]
=) [
@ g 5]
P gl o o
o 3 g * 8 s "
a® » - a
>
X X
Underfitting Just right!

overfitting

21

Bias-variance decomposition

True value] Estimated value
A2
S = Ity\— y)

o -3 =y — EB] + E[] - $)*
= (y — ED* + (E] — y)* + 2(y — EBD(EB] -).

E[2(y — E[YD(E[Y] — Y] = 2E[(y — E[YD(EY] —)]
= 2(y — EYDEI(EDY] — y)]
= 2(y — E[YD(ELE[Y]] — E[Y])

= 2(y — EYI(ED] — ED]
E[S] = E[(y — $)?] =0.(>’ DDED 5]

(v — EBD* + ELED] - $)7]

= [Bias]® + Variance.

Can be understood by replacing y and y with model parameters 6 and 6
22

Balance bias-variance trade-off

underfitting
zone

overfitting
zone

generalization
Error

" variance

optimal capacity

23

Machine Learning Process

TRAINING
Training model training
Set
Machine
Learning
Raw data & Feature Validation f
target Engineering Set hyperparameters tuning
model selection
evaluation
PREDICTING l

Feature

New data . : Predict
Engineering

https://techblog.cdiscount.com/assets/images/DataScience/automl/ML_process.png 24

Linear Regression

Linear regression

* Use to approximate the function of Y on X

* How to select the most appropriate linear model?
* Error: Mean squared error (MSE)

1 & 5
MSE = — Y: — Y;)?
n;()

e Where Y and Y are the true values and predicted values

* Find the linear model with the smallest MSE

Question

* Given the dataset
(1,1),(2,4), (3,5)

Y=2X+1
* What is the mean squared error?

and the linear model

* The predicted points are
(1,3),(2,5),(3,7)

* So the mean squared error (MSE) is
1
5(22 +12 +22) =3

Question 2

* Given the <real value, predicted value> pairs as:
<12,1.7 >,<09,0.2 ><-0.3,01><13,03><11,12 >
compute the means squared error

* The answer is

1
E(O.S2 + 0.7% + 0.4% + 1% + 0.1%) = 0.382

How to get linear model with minimal MSE

* MSE for model parameter 6:

1
J©) =5) (= 07x)?
=1

* Find an estimator 8 to minimize J(6)

*y=0Tx+b+e. Thenwe canwritex’ = (1,x1,...,x%),0 =
(b,04,...,0,),theny =0"x" + ¢

* Note that /(8) is a convex function in 8, so it has a unique minimal
point

Interpretation

Sum of squares error contours for linear regression

5 3 :
prediction ‘ : :
4+, truth 25}~
3l of ~f
20 15F-
1r ‘_;. 1
or 0.5}
-1 ot
2 05
_3 1 1 1 1 1 1 1]
-4 -3 -2 -1 0 1 2 3 4 -1 :
-1 0 1 2 3
w0
(a) (b)

Figure credit: Kevin Murphy

J(8) is convex

e f(x) = (y —x)%*= (x — y)?is convex in x

+ g(6) = f(6"x)
g((1=1)6; + t0,)

= f ((1 —)0, 'x + tHsz)

< (1-0)f (6, x) +tf (6, x)
= (1-1)g(6,) + tg(62)

e The sum of convex functions is convex
* Thus J(6) is convex

Minimal point (Normal equation)

aj(0) _ T T
° 38 Z 1(9 Xi — yl)xl — 1(X [X 0 — lel)
* Letting the derivative be zero
N N
T _
z xix; |10 = z X;Yi
ol | [x o x® V1
clfwewriteX =1|: | = : ,y =1 |, then
XT 1 d y
AN _xN XN_ LN

Minimal point (Normal equation) (cont.)

c XTX0 = XTy
 When X "X is invertible

6=X"X)"1xTy

Question 1

 Given the dataset

(1,1), (2,4), (3,5)
compute the normal equation for 8, solve 8 and compute the MSE

X1 1 1 17
X=|x,|=[1 2|,y=|4
x] 1 3. 5
e o I3 61 o1.. [10
XX_[14]’X3’_[24

[2 164] rgj B BZ

0 = [—g,Zl,yz —§+ 2X. MSE=§

Question 2

* Some economist say that the impact of GDP in ‘current year’ will have
effect on vehicle sales ‘next year’. So whichever year GDP was less,
the coming year sales was lower and when GDP increased the next
year vehicle sales also increased.

* Let’s have the equationasy = 6, + 6,x, where
* vy = number of vehicles sold in the year

 x = GDP of prior year

We need to find 8, and 6,

Question 2 (cont.)
 Here is the data between 2011 and 2016.

Ve GDP |Selesofvehice

2011 6.2

2012 6.5 26.3

2013 5.48 26.65 Homework
2014 6.54 25.03

2015 7.18 26.01 /

2016 7.93 27.9

2017 30.47

2018

* Question 1: what is the normal equation?

* Question 2: suppose the GDP increasement in 2017 is 7%, how many
vehicles will be sold in 20187

Gradient method motivation — large dataset

* Too big to compute directly
0=X"X)"1xTy
* Recall the objective is to minimize the
loss function

N
1
L(O) =J(©) =5) (i — 0Tx)?

e Gradient descent method

L(0)

18

16 |

14f -\

12

10

(=3} oo
T

Batch gradient descent

N

* fo(x) =0"x J(0) = 5 Z(yi — fo(@:))? min J(6)

6

. (6)
o0

* Update Onew < Oo1a — 71 for the whole batch

N
T i fata 2

1=1 38

Stochastic gradient descent

JO0) = S~ folw)? min IO (0)

* Update Ohew = Oo1q — nan’;(a) for|every single instance
0™ (6) 0 fo(x:)

= —(yi — fo(x;))x;
Onew = Oold + n(yi — fo(xi))zi

* Compare with BGD
* Faster learning
* Uncertainty or fluctuation in learning

39

Mini-Batch Gradient Descent

A combination of batch GD and stochastic GD

 Split the whole dataset into K mini-batches

1,2,3,....K}

*|For each mini-batch k,

towards minimizing

J*)(9) =

* Update Qnew — Qold — 1N

1
2N} —

perform one-step BGD

Ny,

(yi — fo(zs))?

0J k) (9)

5 for each mini-batch

40

Comparisons

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

41

Searching

e Start with a new initial value 6
» Update @ iteratively (gradient descent)
* Ends at a minimum

1

J(eo'el) 0-

42

Unigueness of minimum for convex objectives

loss w.r.t. parameters

0.8

0.6 -

0.2 4

0.0 4

-0.2

-2 -1 0 1 2 3
H(i

* Different initial parameters and different learning algorithm lead to the
same optimum

43

Learning rate

Qnew — Hold — 1

18

16}
14}

7 too small

12+

o\ slow convergence

J(0)

s —4 -2 0 2 4 6

* The initial point may be too far away
from the optimal solution, which
takes much time to converge

J(0)

. (6)

00

18

ol 7 too large
1) ‘Increasing value of J(0)

12+

10

-6 '} =2 0 2 a
0

* May overshoot the minimum

* May fail to converge

* May even diverge

* To see if gradient descent is working, print out J(6) for each or every
several iterations. If J(8) does not drop properly, adjust 7

44

Regularization

Problems of ordinary least squares (OLS)

e Best model is to minimize both the bias and the
variance

¢ Ordinary IeaSt Squares (OI—S) Low Variance High Variance
* Previous linear regression
* Unbiased

e Can have huge variance

e Multi-collinearity among data

* When predictor variables are correlated to each other and to the
response variable

e E.g. To predict patient weight by the height, sex, and diet. But height
and sex are correlated

* Many predictor variables
* Feature dimension close to number of data points

e Solution

Low Bias

High Bias

* Add a penalty term to the OLS equation

46

Ridge regression

* Regularization with L2 norm
LRidge = (y _X9)2+/1”9“%

*)l’ — O’ HRldge — HOLS wy A '
A F IR ENFAL
el —> 00,0 -0 - /
* As A becomes larger, the variance decreases but the N\
I I 36 4 AR B — (NS
bias increases RREHA— PN
. . LR EEs /ST W}\'\‘ e o
* A: Trade-off between bias and variance) / //,/ N
* Choose by cross-validation < % w;
* Ridge regression decreases the complexity of a
model but does not reduce the number of variables V

(compared to Lasso later) 47

Solution of the ridge regression

a l e
Lg;g =230 1(0Tx; — y)x; + 226

* Letting the derivative be zero

/11+2XXT 9—2 XiVi

I (= o xf] pr
*lfwewriteX =| : | = : ,y =1 + |, then
xn| o |xy o xR VN

éridge = (A + XTX)_ley

Always invertible

Lasso regression

e Lasso regression: linear regression with L1
norm

Ligsso = (y _XH)2+/1||9”1

wy ‘ ‘
F iR EREEE
* Lasso eliminates some features entirely and \
gives a subset of predictors that helps AN
mitigate multi-collinearity and model ‘“-%‘-«WM~----~\¥>\/-;5,\‘\
complexity LAERFAA 7 | RN
&l b N
* Predictors do not shrink towards zero 44 .
significantly that they are important and N\ | A
thus L1 regularization allows for feature

selection (sparse selection)

49

Ridge vs Lasso

 Often neither one is overall better.

* Lasso can set some coefficients to zero, thus performing variable selection, while ridge
regression cannot.

* Both methods allow to use correlated predictors, but they solve multicollinearity issue
differently:

* Inridge regression, the coefficients of correlated predictors are similar;
* In lasso, one of the correlated predictors has a larger coefficient, while the rest are (nearly) zeroed.

* Lasso tends to do well if there are a small number of significant parameters and the
others are close to zero
* when only a few predictors actually influence the response

* Ridge works well if there are many large parameters of about the same value
* when most predictors impact the response

 However, in practice, we don't know the true parameter values, so the previous two

points are somewhat theoretical. Just run cross-validation to select the more suited
model for a specific case.

15—

10F

Linear regression with non-linear relationships

*Eg. p(x) = (1, x,x%, ..., x and y~N (8T p(x),02)

e Features: Last hidden layer of Neural Networks

degree 14

15

degree 20

101

-10—

15 20

Figure credit: Kevin Murphy

15

51

20

Logistic Regression

Linear Discriminative Models

e Discriminative model
* modeling the dependence of unobserved variables on observed ones
* also called conditional models
* Deterministic: y = fg(x)
* Probabilistic: pg (v]x)

* Linear regression model

d
y = Jo(z) = 0o + Zgjﬂij — 0z

j=1

r=(1,21,x9,...,2q)

Linear discriminative model

e Discriminative model
* modeling the dependence of unobserved variables on observed ones
* also called conditional models.
« Deterministic: ¥ = fo(x)
po(y|z)

* For binary
*pe(y=1]|x)
*po(y=0|x)=1 —pg(y =1]x)

Classification problem

* Given:

e A description of aninstance x € X

* Afixed set of categories: C = {ci1,¢2,...,¢m}
* Determine:

* The category of z: f(x) € C where f(x) is a categorization function whose
domain is X and whose range is C

* If the category set binary, i.e. C = {0, 1} ({false, true}, {negative, positive})
then it is called binary classification

Cross entropy loss

* Cross entropy
e Discrete case: H(p,q) = — ., p(x)logqg(x)

 Continuous case: H(p,q) = — fx p(x)logqg(x)

* Cross entropy loss in classification:
* Red line p: the ground truth label distribution.

* Blue line g: the predicted label distribution.

_

Entropy example for binary classification

* Cross entropy: H(p,q) = — 2, p(x) log q(x)

* Given a data point (x, 0) with prediction probability
qo(y = 1|x) = 0.4
the cross entropy loss on this point is
L=—-p(y=0|x) logqeéy = 0|x) —p(y = 1l|x) log qo(y = 1|x)

= —log(1—-04) = log§

* What is the cross entropy loss for data point (x, 1) with prediction
probability

qgo(y = 1|x) = 0.3

Cross entropy loss for binary classification

* Loss function for data point (x, y) with prediction model
| pe (- |x)
is
L(y' X, pH)
—1;=1log pg(1lx) — 1=0log pg(0]x)
—y logpe(1lx) — (1 —y)log (1 — pe(1]x))

Binary classification: linear and logistic

* Linear regression:
e Target is predicted by hg(x) = 0 "x

* Logistic regression
1
+e-0Tx

e Target is predicted by hy(x) = (6 Tx) = -
where

0(2) = 1+ e™2
is the or the

0.5

9(z)

Logistic function

t
-20

T
20

Properties for the sigmoid function

1
) O-(Z) - 1+ e 2

* Bounded in (0,1)
*g(z) > 1whenz -
* 0(z) > 0Owhenz » —

. 7 . d 1 _ —7 _2._10_ -B_Z
(D)=L= _(1+e) 2 (=)

T 1t+e7l+e?
1

1
=1+e‘Z 1_1+e‘Z)
= O'(Z)(l — a(z))

Logistic regression

* Binary classification
po(y = 1|z) = 0(0'z) =

g—l_

1
1+ e 0z

e I

pe(y = Olz) =
140 . / is also convex in 6
* Cross entropy loss function

L(y,z,pg) = —ylogo(0'z) — (1 —y)log(l — (8 'x))

* Gradient
8£(yt:rap9) _ 1 1
50 = _yg(ﬁTm)J(z)(l —o(z))z — (1 — y)l — g(ﬂTm)g(z)(l —o(z))z
= (0(0"2) —y)z 502) o
6 —0+n(y—o(0T2) 8:; =0(2)(1—0(2)) | Onew < 0w —67178—((9)

Label decision

* Logistic regression provides the probability

1
—1lz) =0(0'z) =
Pe(y |) ()]."‘E’._HT'I
e—BTm
Po(y = 0lz) = < g

* The final label of an instance is decided by setting a threshold h

;o {1, po(y = 1|z) > h

0, otherwise

Confusion matrix

e Remember what we have learned about the confusion matrix
Prediction Prediction
1 0
True False True False
1 Positive Negative . Positive Negative
Label Label |
False True False True
0 Positive | Negative 0 Positive Negative F]_ — 2 X PI'EC X RGCEL]_]_
Prec + Rec
* Precision: the ratio of true * Recall: the ratio of cases
class 1 cases in those with with prediction 1 in all true
prediction 1 class 1 cases
TP TP
Prec = Rec =
TP + FP TP + FN

* These are the basic metrics to measure the classifier

63

-_——'-'
-

Area Under ROC Curve (AUC)
. ;;.-' L]
o ﬁ“\"#TZ'--- FF rale at
) f El'-i-:.ll.'l-_"l -JErl:‘;::::
* A performance measurement for g L
classification problem at various thresholds r
settings o 1
. Receiver operating characteristic example
* Tells how much the model is capable of |, e — —
distinguishing between classes ‘
0.8} .
* Receiver Operating Characteristic (ROC) £,
Curve
* TPR against FPR g 04

. TPR/RecaII/Sen5|t|V|txl;P=TPJrFN 02|
FPR=1-Specificity=

TN+FP o — ROC curve (AUC = 0.79)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

AUC (cont.)

TPR

FPR

TPR: true positive rate
FPR: false positive rate

It’s the relationship between TPR and FPR when the
threshold is changed from 0 to 1

In the top right corner, threshold is 0, and every thing
is predicted to be positive, so both TPR and FPRis 1
In the bottom left corner, threshold is 1, and every
thing is predicted to be negative, so both TPR and FPR
isO

The size of the area under this curve () is an
important metric to binary classifier

Perfect classifier get AUC=1 and random classifier get
AUC=0.5

True positive rate

AUC (cont.)

| /
0.8 - ’1:7/
0.6
— NetChop C-term 3.0
0.4 — TAP + ProteaSMM-i
' ProteaSMM-i
0.2
L I ! I 1 I !
0 0.2 0.4 0.6 0.8 I

False positive rate

It considers all possible thresholds.

Various thresholds result in different true/false
positive rates.

As you decrease the threshold, you get more true
positives, but also more false positives.

From a random classifier you can expect as many true
positives as false positives. That’s the dashed line on
the plot. AUC score for the case is 0.5. A score for a
perfect classifier would be 1. Most often you get
something in between.

66

AUC example

‘

1.0 0.91 1
0.85 0
0.75
True 0.77 1
P05|t‘|ve os | 0.72 1
Ratio
0.61 0
0.25
‘ 0.48 1
. . 0.42 0
0.25 05 075 1.0 0.33 0

False Positive Ratio

AUC =0.75

Support Vector Machine

Example

* Both the two solutions can separate the data perfectly, but we prefer
the one on the right, why?

X2

5 3 7 8 9 0 1 2 3 B
x1 x1

69

Notations for SVM

Feature vector x

Class label y € {—1,1}
* |Instead of {0,1}

Parameters
* Intercept b

* We also drop the convention we had previously of letting x, = 1 be an extra coordinate in

the input feature vector
* Feature weight vector w

Label prediction

Sign function

2!

1

* hyp(x) = gw'x+Db)

o3/

. g(2) = +1 z=>0
—1 otherwise

 Directly output the label
* Without estimating probability first (compared with logistic regression)

70

Scores of logistic regression

e let s(x) = 6, + 0;x, + 6,x,, so the probability in logistic regression
is defined as pg(y = 1]x) = -

1+e—SX)

* Positive prediction means positive scores
* Negative prediction means negative scores

* The absolute value of the score s(x) is to the distance x
to the decision boundary 8y, + 8,x, + 6,x, = 0

llustration of logistic regression

* The higher score, the larger distance to the decision boundary, the
higher confidence. E.g.

T2

s(x?) = 6y + 0,x{ + O,x3

s(xB) = 0y + 0,x8 + 0,5

= Decision .
boundary

s(x€) = 6y + 0,x5 + 0,x§
s(x)=0

I

Geometric margin

* w vector is orthogonal to the decision boundary

boundary
For prediction points

x w
lw|
w
"l (x —y —
lwl|

Solve it, get

In general,

is the distance of the point to the decision

)+b=o

lies on the decision boundary

with [|[w]| = 1

1 A

Intultion

e Positive when A
pe(y =1lx) = hg(x) =a(6"'x) = 0.5 N
or X
0Tx>0 '

 Point A

e Far from decision boundary
* More confident to predict the label 1

e Point C
* Near decision boundary -

* A small change to the decision boundary could
cause predictiontobey =0

Hyperplane and margin

e |deaofusingy € {—1,1
Y €L) xX'w+b=0

XwW+b>1 ——, o
X' w+b<-1

xw+b=1

75

Objective of an SVM

* Given a training set

S = {(xi;yi)};i — 11 ,N
margin is the smallest geometric margin

y = min y*
1=1,...n

* Objective is to maximize the margin, or equivalently
: 2
min —||w
nin. II. | |
S.t. y‘(WTx‘ + b) > 1, i=1,..,N

Karush-Kuhn-Tucker (KKT) Conditions

e w¥, a’, B"satisfy the KKT conditions:

* Suppose
* f and g;’s are convex 68 Lw*,a*,p*)=0,i=1,...,n
, w;
* h;’s are affine 5
* g;'s are all strictly feasible @‘C(‘”*ﬂ ,B7)=0,i=1,...,1
* There exists w such that g;(w) < 0 for all i [ES;S:;LEHWW gi(w) =0, i=1,....k]
. condition N
* Then there must exist w*, a™, B~ TR0 =1,k
 w” is the solution of the primal problem o >0,i=1,...,k
* a”, " are the solution of the dual problem Ifa; >0, then g;(w*) =0
* And the values of the two problems are e The converse is also true
equal
p* =d* = L(w*, ",) * If some w, a, b satisfy the KKT conditions, then
it is also a solution to the primal and dual
problems

* More details can be found in Boyd’s book
“Convex optimization”

Rewrite the SVM objective

* The objective of SVM is

n = [lwlf?
min —uw
wb 2

s.t. y(w'™x*+b)=1, i=1,..,N
* Rewrite the constraints as
gw) ==y (wTx'+b)+1<0
* It is equivalent to solve the dual problem

 Note that from the ,a; > 0is
only possible for training samples with g;(w) = 0

Support vectors R

. ®X x X
* The points with smallest margins 0.

\

* gilw) =0
« —yi(wTx'+b)+1=0
* Positive support vectors
cwix+b=1

* Negative support vectors . ®
s w'x+b=-1
2}
|
* Only support vectors decide the decision Hyperpline "
boundary >/ . |
* Moving or deleting non-support points doesn’t Margin ‘ O Support veials @kl

change the decision boundary -

Lagrangian of SVM

* SVM objective:

n - lw]|?
min —||w
wb 2

gw) =—yi(wTxi+b)+1<0,i=1,..,N
* Lagrangian

N
1 . .
Lw,b,a) = 5 lw||? + z ai[l — y‘(wal + b)]
i=1

* It is equivalent to solve the dual problem

e ip L v)

Solve w* and b*

e With o™

N
w = z a;ytxt
i=1

* a; > 0 only holds on support vectors

e Then "

b* maxi:y(i):

LW T M W T ~_ Checkiit!
2

81

Predicting values

A
. oaN | o ><><
° WTX + b — (Z{:V=1 C(iylxl)Nx + b @X « X
- z C(lyl<xl’ x) + b ’ 0 @
=1 0 oO O\\\‘\

* Only need to calculate the inner product of x with support vectors

e Prediction is
y = Sign(w"x + b)

Regularization motivation

* SVM assumes data is linearly separable
* But some data is linearly non-separable
* SVM is susceptible to outliers

83

Solution — Soft margin

* To make the algorithm work for non-linearly
separable datasets as well as be less sensitive to
outliers

 Add slack variables

] 2 & o .:.
min —||lw||“ + C et
nin —[|w] 2

s.t. yi(WTxi+b)21— , (i=1,...,N
EiZO, l:1,,N

84

Example

 Correctly classified points beyond the support line
with& =0

e Correctly classified points on the support line
(support vectors) with & = 0

* Correctly classified points inside the margin with
0<éEK1

* The misclassified points inside the margin with
slack 1 < & < 2

* The misclassified points outside the margin with
slack & > 2

The Lagrangian

* Lagrangian
L(w,b, ¢ a,r) .

—||W||2+CZEl+zal[1—El y(w +b)] Eriéi

=1
* And the dual problem is

L
O

Revisit the regularized objective

1
* min — lwl|? + C XY, &
w,

b . .
s.t. yl(WTxl + b) >1-¢,,]
¢& =0, i=1,..,N

e min = w2 + € ¥, max{0,1 — y*
wb 2

1, ...

SVM hinge loss vs. logistic loss

* SVM hinge loss * Logistic loss
* L(y, f(®)) = max{0,1 —yf(x)} < L(y,f(x))=
CFory = 1 —y logo(f(x)) —(1 —y) log (1 - o(f (x)))

— Zero-one loss
— Hinge loss
—— Logistic loss

88

The effect of penalty coefficient

. 1 2 N
° rxg} E “W ~+ C2i=1 Ei

 Large C will result in narrow margin

89

Non-linearly separable case

* Feature mapping

&) 0

0

e %

¢(z)

1.0

90

From inner product to kernel function

* SVM N N N
1 .
W)=) a;— 522%’%3’1)’]
=1 i=1j=1
e Kernel N N N
1 o
W(a) = z a; — Ez a;a;y'y’
=1 i=1j=1

e Kernel trick:

* For many cases, only K(x xf) are needed, so we can only define these K;; without
explicitly defining @

* For prediction, only need K(xi, x) on support vectors

Property

 If K is a valid kernel (that is, is defined
by some feature mapping @), then

the kernel matrix K = (KU)

RY*N is symmetric positive seml-

definite
* Symmetric
o Kl] = K(xi,xj)

(@(x)), @(x"))

=(o(x') o(x/)) =

— K(xj,xi) — I(ji

Positive semi-definite
Zzzimjzj
>3 oty
53 T o)
222m

TR

k

0.

(

2.

i

2
Zan((1)))

D)z;

Examples on kernels

e Gaussian kernel

K(x,z) = exp —Hﬁ:_zHQ
' 2) = ex] 52

e Radial basis function (RBF) kernel
* What is the feature mapping @? (Hint: by using Taylor series)

.’I:T

* Simple polynomial kernel K(z,z) = (z'z)
* Cosine similarity kernel K(z,z) = 2] -ﬁz\l

 Sigmoid kernel
K(z,z) = tanh(az 'z + ¢)

1 — 8_2b
1+ e—20

tanh(b) =

Pros and cons of SVM

* Advantages:
* The solution, which is based on convex optimization, is globally optimal
» Can be applied to both linear/non-linear classification problems
* Can be applied to high-dimensional data
* since the complexity of the data set mainly depends on the support vectors

 Complete theoretical guarantee
 Compared with deep learning

* Disadvantages:
* The number of parameters a is number of samples, thus hard to apply to
large-scale problems
* SMO can ease the problem a bit
* Mainly applies to binary classification problems

* For multi-classification problems, can solve several binary classification problems, but
might face the problem of imbalanced data

Neural Networks

Perceptron

* |Inspired by the biological neuron among humans and animals, researchers

build a simple model called
: »@ -0
Ewl;xl- L

s Lif X w.x:>0
i=0 0= { i=0 I 1

-1 otherwise

o(T1,...,Ty) =

1 ifwg+wiz1+ - +wpzr, >0
—1 otherwise.

* It receives signals x;’s, multiplies them with different weights w;, and
outputs the sum of the weighted signals after an , step
function

Activation functions

 Sigmoid: g(z) = 1+i-z
* Tanh: tanh(z) = ZZ;Z:Z

* ReLU (Rectified Linear Unity):
ReLU(z) = max(0, z)

Most popular in fully
connected neural network

N

Sigmoid Hyperbolic Tangent
Traditional /
Non-Linear 0 0
Activation
‘ -1 1
Functions 1 0 1 1 0 1
y=1/(1+e*) y=(eX-eX) /(e*+e*)
Rectified Linear Unit .
Exponential L
(ReLU) Leaky ReLU Xp ial LU
1 1 1
Modern
Non-Linear gt 0 0
Activation
Functions
-1 -1 -1

/—1 0 1 -1 0 1 -1 0 1
X, X209

Most popular in
deep learning

y=max(8, x) y=max(ax, x) y={u(ex-1) ']

a = small const. (e.g. 0.1)

97

Activation function values and derivatives

Some Common Activation Functions Activation Function Derivatives

...

| ' ' (] S S S R S—

- tﬁz'ﬁgar_(x)

— ‘fﬁgmm'd (T) _flSz'gmofd(x}
-1 " fam () | M (%)

4 2 0 2 4 4 2 0 2 4
X X

Sigmoid activation function

* |ts derivative

* Sigmoid . o' (z) =a(2)(1-0(2))
o(z) = e Output range (0,1)

1+e72 : . :
* Motivated by biological neurons
and can be interpreted as the

a probability of an artificial
neuron “firing” given its inputs
o | * However, saturated neurons
| make value vanished (why?)
£ (£(FC)
| - —L— £([0,1]) €[0.5,0.732)

» £([0.5,0.732)) < (0.622,0.676)

Tanh activation function

* Tanh function * Its derivative
sinh(z) e?—e™ tanh'(z) = 1 — tanh?(2)

cosh(z) eZ+e~Z *Outputrange (—1,1)

* Thus strongly negative inputs to
the tanh will map to negative
op o~ outputs

tanh(z) =

* Only zero-valued inputs are
; , _ mapped to near-zero outputs

* These properties make the
', network less likely to get “stuck”
during training

RelU activation function

Its derivative

* ReLU (Rectified linear unity)
function ReLU'(z) = {
ReLU(z) = max(0, z)

1 ifz>0
0 ifz<0

ReLU can be approximated by softplus function
fSoftplus(-T) — I'Dg(l + BI)

3 :
—Softplus * RelU’s gradient doesn't vanish as x increases
o} Rectifier * Speed up training of neural networks
* Since the gradient computation is very simple
®illy | * The computational step is simple, no exponentials, no
= multiplication or division operations (compared to others)

The gradient on positive portion is larger than
sigmoid or tanh functions

* Update more rapidly

|

-1t a j | 1 * The left “dead neuron” part can be ameliorated by Leaky
-3 -2 -1 0 1 2 3 RelU 101

RelLU activation function (cont.)

e RelLU function * The only non-linearity comes from the path
selection with individual neurons being active or
ReLU(z) = max(0, z) ot ©

* It allows sparse representations:
» for a given input only a subset of neurons are active

Output

[—) y N
’—boflplus

. s Hidden layer 2
—Rectifier ’

Hidden layer 1

Input

Sparse propagation of activations and gradients

102

number of neurons can approximate continuous functions

[

[

/

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White.
approximators." Neural networks 2.5 (1989): 359-366

ny(x
na(x
n3(x
ng(x
ns(x

ne(z

R N

Z(x)

Relu(—5x — 7.7)
Relu(—1.2z — 1.3)
Relu(1.2x + 1)
Relu(l.2x — .2)
Relu(2x —1.1)
Relu(5x —5)

= —nq(z) — na(z) — ng(x)
+na(x) + ns(x) + ne(x)

Furchon Approximaiion
T T T

1-20-1 NN approximates
a noisy sine function

L

"Multilayer feedforward networks are universal

103

Single / Multiple layers of calculation

* Single layer function Q
fo(x) = a(0p + 01x; + 0,x3) Q Q

* Multiple layer function
¢ hy(x) = 0(62 + 61x, + 01x,) @

* hy(x) = 0(65 + 67x1 + 05x3,)
O O
O O

* fo(h) = d(0g + 61hy + O,h;)

Gradient interpretation

e Gradient is the vector (the red one) along which the value of the
function increases most rapidly. Thus its opposite direction is where
the value decreases most rapidly.

105

Gradient descent

* To find a (local) minimum of a function using gradient descent, one
takes steps proportional to the negative of the gradient (or an
approximation) of the function at the current point

* For a smooth function f(x) 9 ;

rapidly. So we apply

|s the direction that f increases most

Xt41 = X 77 Xt
| t+ t ax ()
until x converges

Feed forward vs. Backpropagation

Input units

v =1(z)

4 = E Wia Yk
keH2

Y = 1(z)

Zy = E Wik,
J e HI

y; =1(z)

Z; = 2 W;i X;

i & Input

aE _ W dE
dY . 0z,
| £ out

dE _ dE AV,

4z, Ay, 0Z,

Compare outputs with correct
answer to get error derivatives

l l E}—E:}’r—tr

f.iy |

EJE :{T\IE {}J""}

Make a prediction

inputs labels

Input layer hidden layer output layer

Two-layer feedforward neural network

Feed-forward prediction:

h(l) = f(l) net() f(l)(Zw m f(r)) ﬂret() ijiljhgl)

= (21,..., %) h(l) > Uk

where netgl) = Z wf,-,l%xm netf) — Z F(c‘)j hu(?l)

J

108

Make a prediction (cont.)

labels

input layer hidden layer output layer

Two-layer feedforward neural network

Feed-forward prediction:

. 1), (1
hﬁ” = f(l)(ﬂ-ﬁfffl)) = fayO %(lrzlffm) = fi((net;”) Zwijhﬁ)
= (21,...,2m) - - hgl) L

J

109

Make a prediction (cont.)

. 1 1) 1)
inputs w; g, Mel M (2) outputs labels

Input layer hidden layer output layer

Two-layer feedforward neural network

Feed-forward prediction:

h() = f() net() f() Zw m - fq) nef f(r) Zu,kl)h 1)

z=(21,....,2Tm) > hgl) L

(1) _ (1) 2 1)
where net;’ = ij‘mxm nef;(r) — Z éjhg 110

J

Backpropagation

inputs Wim (2) outputs labels

&

Input layer hidden layer output layer

Two-layer feedforward neural network

Feed-forward prediction:

Assume all the activation functions are sigmoid

Error function E = %Zk(yk — t;,)?

9E _ o,
oy, Tk Ttk

d I} 2 1 1
=y (net,g)) h}) = y(1 - yk)h})

(2)
awk'j

OF
> —(F = —(tx ~ Yy (1 - vi)ht
ow J
k,j
2 2 2), (1)
. = W,E,j) « WIEJ-) + n(S,E)hj 5}52)

Output of unit j

BV = faynetd) = fay (3 wihdm) v = foy(net?) = fioy (D w
m (1) J
h

(1), (1)
ki

= (21,..., %) >

where netgl) = Z wf,-‘l%:rm netf) = Z wZI Y

J

k,g""3
J

-

)

Yk

111

Backpropagation (cont.)

(1) -net&l) hgl)

inputs Wim (2) outputs labels

Input layer hidden layer output layer
Two-layer feedforward neural network

Feed-forward prediction:

R = foy(mety)) = f(l)(zw om) = o net®) = f Z“‘“
1)
» b

Error function E = %Zk(yk — t;,)?

OE

— =Yk — g

oYk

5;52) = (tx — Vi)V (1 — yx)

o w® o W 1 s@p®

dyr)

ah§.1) =y (1 —y)w

oniY e 1 1)
D = fly (netf) xm = BP (1= ")

(')E 1 1
T = —h“(1= hP) 2w (1 = 7071 = 1) 2

e h(l) z wB5® xp

1 1 1
S w® e w® 4 ys®y, §i5j(1)

J

\Ivhe re netgl) =3 wl) am net?) = }:j hgl)

» Uk

112

e Error function E = %Zk(yk — ty)?

Backpropagation algorithms |+ 8% = e=vana -

¢ o w® cw® 4 ps@ D

L . o LS W@ (2) 5(2)
* Activation function: sigmoid 6" = n (1= hV) Zewi) 5

. (1) (1) (1)
= Wiy < Wiy + 775]- Xm

Initialize all weights to small random numbers
Do until convergence

* For each training example:
1. Inputit to the network and compute the network output
2. For each output unit k, oy, is the output of unit k

6 < 0 (1 — 0r) (& — 0)
3. Foreach hidden unit j, o; is the output of unit j

5] — 0](1 - O]) Z Wk,j5k

' kenext layer o
4. Update each network weight, where x; is the output for unit i

Wji < Wji + 106X

See the backpropagation demo

* https://google-developers.appspot.com/machine-learning/crash-
course/backprop-scroll/

114

https://google-developers.appspot.com/machine-learning/crash-course/backprop-scroll/

Formula example for backpropagation

Cutputs

Formula example for backpropagation (cont.)

o }—P
N 1. Calculate errors of output neurons

T) 84 = outy (1 - out,,) (Target, - out,,)
/B_. k _(k —_h;) 122) (?ref;,) 8“: OUt[ﬁ (] _ Out[;) (Target[; _ out”)

N

: /\) 2. Change output layer weights
N o) WIPAQ = Waa + nNdy outy WTAB = W,\ﬁ + T]SB outa
_/ Awy? = nError,Output, = &, W ge = Wpy + Nnd, outp W pg= Wgp + ndg outp

Wca= Weo + 18, out W ep= Wep + 1ndp out
3. Calculate (back-propagate) hidden layer errors

Consider sigmoid . 8= outa (1 —outa) (3 Wae+ 55Wap)
activation function Jsemeid™/ = = S =fu ‘(nerj—”)zrf,,wg? 3= outp (1 — outg) (8 Wpy + 35Wgp)
k d¢ = outc (1 —outc) (8Weo + 3gWep)

1
0.9}
08
0.7}
06}
0.5}

4. Change hidden layer weights

04 | WA= Wia+ ndaim Waa=Wga + ndain
02| | mrj.lf" =nErmor,Quiput,, = nox,, ."A_ i AT :.QA_ A N AT
0; | Wiis= Wi+ nogin;, Wiap=W s + ndping
0 o " B . } - i .
Wic= Wic+ndeiny Wiac=W gc +nocing

-f'Sigmor'd ('\) = j:S’fgmor'd (I)(l - fS‘igmofd ("\)) 116

Calculation example

* Consider the simple network below:

Input
A =035

'—"' Output

e Assume that the neurons have activation function and

* Perform a forward pass on the network and find the predicted output
* Perform a reverse pass (training) once (target =0.5) withn =1
e Perform a further forward pass and comment on the result

* For each output unit k, oy, is the output
of unit k

Calculation example (cont.) Sy < 01— 0tk — 00)

* For each hidden unit j, o; is the output of

Answer: unity
(i)
Input to top neuron = (0.35x0.1)+(0.9x0.8)=0.755. Out = 0.68. §; « Oj(l — Oj) z Wi, i Ok
Input to bottom neuron = (0.9x0.6)+(0.35x0.4) = 0.68. Out = 0.6637. '
Input to final neuron = (0.3x0.68)+(0.9x0.6637) = 0.80133. Out = 0.69. kenext layer
* Update each network weight, where x; is
(i) the input for unit j

Output error 5=(t-0)(1-0)o = (0.5-0.69)(1-0.69)0.69 = -0.0406.
Wi < Wj; +10;x;

New weights for output layer

wl' = w1+ x input) = 0.3 + (-0.0406x0.68) = 0.272392.
w2" = w2+(8 x input) = 0.9 + (-0.0406x0.6637) = 0.87305.

Errors for hidden layers:)
81 =38 x wl =-0.0406 x 0.272392 x (1-0)o =-2.406x10™
82= 86 x w2 = -0.0406 x 0.87305 x (1-0)0 =-7.916x10"

. . Input 0.1 .'/ \\\

New hidden layer weights: A =035 \ J~03
w3'=0.1 + (-2.406 x 107 x 0.35) = 0.09916. 08 " \/\
wd' = 0.8 +(-2.406 x 107 x 0.9) = 0.7978. | b Output
w5'=0.4+(-7.916 x 10” x 0.35) = 0.3972. 04, S
w6 = 0.6 +(-7.916 x 107 x 0.9) = 0.5928. put e %’

R N
(1i1)

Old error was -0.19. New error is -0.18205. Therefore error has reduced.

118

Calculation example (cont.)

* Answer (i)
* Input to top neuron = 0.35 X 0.1 + 0.9 X 0.8 = 0.755. Out=0.68
* Input to bottom neuron = 0.35 X 0.4 + 0.9 X 0.6 = 0.68. Out= 0.6637
* Input to final neuron = 0.3 X 0.68 + 0.9 X 0.6637 = 0.80133. Out= 0.69
(i)
e Outputerrord = (t—0)o(1—0)=(0.5-0.69) X 0.69 X (1 —0.69) =—0.0406
* Error for top hidden neuron §; = 0.68 X (1 — 0.68) X X (—0.0406) = —0.00265
 Error for top hidden neuron §, = 0.6637 X (1 — 0.6637) X X (—0.0406) = —0.008156
* New weights for the output layer
* Wy =0.3-0.0406 X 0.68 = 0.272392

* Wy, =0.9-0.0406 X 0.6637 = 0.87305
* New weights for the hidden layer

« wy, = 0.1—0.00265 x 0.35 = 0.0991
« wyp = 0.8 —0.00265 x 0.9 = 0.7976

« w,, = 0.4—0.008156 x 0.35 = 0.3971
« W,z = 0.6 — 0.008156 x 0.9 = 0.5927

* Input to top neuron = 0.35 X 0.0991 + 0.9 X 0.7976 = 0.7525. Out=0.6797

* Input to bottom neuron = 0.35 X 0.3971 + 0.9 X 0.5927 = 0.6724. Out= 0.662

* Input to final neuron = 0.272392 X 0.6797 4+ 0.87305 X 0.662 = 0.7631. Out= 0.682
* New erroris —0.182, which is reduced compared to old error —0.19

For each output unit k, oy, is the output
of unit k

O < ok (1 — o) (tx — o)
For each hidden unit j, o; is the output of
unit j

5 < 0j(1-0) Z Wi,jOk

kenext layer

Update each network weight, where x; is
the input for unit j

Wi < Wj; +10;x;

Input 0.1 .r/ \
A=035 \)03

08 " \7’ ™~

' — Output

0.4 YR ~ /
Input %"
B=09 0.6 /.

N4

Convergence of backpropagation

* Gradient descent to some local minimum
* Perhaps not global minimum
* Add momentum
e Stochastic gradient descent
* Train multiple nets with different initial weights

* Nature of convergence
* Initialize weights near zero
e Therefore, initial networks near-linear
* Increasingly approximate non-linear functions as training progresses

Error

0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002

Two examples of overfitting

Error versus weight updates (example 1)

o 7]

Training set error
Validation set error

5000

10000 15000
Number of weight updates

Error

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Error versus weight updates (example 2)

Number of weight updates

121

‘W‘ T T T
- Training set error ¢ -
i“‘“nb}, Validation set error + |
kY
: . ¥
— . —
*
i ”oq -
0 1000 2000 3000 4000 5000 6000

Avoid overfitting

* Penalize large weights: E(@) = % Y S (tra—ona) th Y wk

deD k€outputs i,

* Train on target slopes as well as values:

2
I 2 Otka OOka
=3 Y Jouaiten X (G2

deD k€outputs jEinputs

* Weight sharing

* Reduce total number of weights

e Using structures, like convolutional neural networks
* Early stopping

* Dropout

122

Convolutional Neural Networks

Previous pipeline of pattern recognition

* The black box in a traditional pattern recognition problem

o

\
Feature Post-processing Classifier
Preprocessing Extraction (Feature selection, (SVM,
(HOG, SIFT, etc) MKL etc) boosting, etc)
4

124

Hand engineered features

* Feature is of critical importance in machine learning, and there are
many things to consider when design the features manually:

* How to design a feature?
* What is the best feature?

* Time and money cost in feature engineering.

e Question: Can feature be

earned automatically?

Preprocessing

Feature
Extraction
(HOG, SIFT, etc)

Post-processing
(Feature selection,
MKL etc)

125

Convolution neural networks

* |s an answer of an end-to-end recognition system

e Contains the following layers with flexible order and repetitions
e Convolution layer
» Activation layer (RelLU)
* Pooling layer

ELU RELU RELU RELU
C NVl CONVlCONVl

|

0
,

* Example of CNN:

.

-
-
-
-
-
i
-
-

126

Convolution in neural networks

* Given an input matrix (e.g. an image) K
. g g _—‘;
* Use a small matrix (called or ; . :’4,:;:52 |
) to screening the input at , | |
. . . .3 Lo Topd
every position of the input matrix 1 2 <58l | :
e 1
. 0
* Put the convolution results at input
corresponding positions (-1)*1+ 0%0+1%2

+(-1)*5+ 0%4 + 1*2
+(-1)*3 + 0%4 + 1%5

=0

127

An animation example

Kerﬁel Cuﬁuqlution
Example

Input Image Feature Map

10 10 10 10
10 10 0 10
10 0 0 10
] 0 0

0 U | 0

0 0 0

Advantage — sparse connections

* Less computing burden

* In fully connected layer (top), every s is linked
to every input x, so thereare 5 X 5 = 25
connecting edges

* In the convolution layer (bottom) with filter
width 3, e.g. s, is a weighted sum of
X1,X>, X3, SO there is no weight connecting s,
and x4, xc. In this example, there are
connecting edges

129

Advantage — weight sharing

* When moving the filter, we don’t change the
weights inside the filter and these weights are
shared at different connecting edges

* In fully connected layer (top), there are 25
connecting edges. The weights on different edges
are different parameters.

* In convolution layer (bottom), there are 13

connecting edges. But since

So = W1Xq + X9 + X3

S3 = WXy + Wy X3 + W3Xy
the number of dh}ferent weights is even smaller. In
this case, there are 3 different weights (

). E.g. the weights on the black

arrows are the same.

0301050,

050100

050100,
0501040,

0201020

® ®

Interpretation of convolution

e Convolution can be used to find an
area with !

* Example:

* The filter in the left represents the
edge in the right, which is the back of
a mouse

30

30

30

o o o o o o o

30

o o o o o

o o o o o o

o o o o o o o

o o o o o o o o
=
n

[}
gh o o o o o o o
o

131

Interpretation of convolution (cont.)

 When the filter moves to the back of the mouse, the convolution

operation will generate a very large value

000 0 0 30 0D|]0)0)0 0 30 (O
0)j0|0O 50 | 50 [50 0000 30 | O 0
0(0¢|0 20|50 |0 0 0100|300 0 0
0[O0 (0 |50 |50(0 0 * 000 |30 (0 0 0
0)0|0 |50(50(0 0 000|300 0 0
0O(0(0 |S0|50(0 0 0|00]30 |0 0 0
0O(0(0 |S0|50(0 0 00|00 0 0 0
Visualization of the Pixel representation of the receptive Pixel representation of filter

receptive field field

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(20*30)+(50*30) = 6600 (A large number!)

132

Interpretation of convolution (cont.)

* When the filter moves to other positions, it will generate small values

X
>

Visualization of the filter on the image

0

0

0

40

40

0

40

20

0

50

0

0

25

25

NMo|lo|lo| ol o] o

o|lo|lOo|lOo| Oo|lO| O

olo|lo|lo|lo| | o

o|lo|lOo|lOo| OO O

Pix

elre

presentation of

receptive field

OoO|lOo|0O| 0|0 O O©

w | OO0l O O

o | olelo|ole|lw| o
=
1)
T lololo|lo|lo|o| w

Multiplication and Summation=10

133

Visualization

* Train the InceptionV3 model (by Google) on the ImageNet dataset

* Then test it on a flower image from the test dataset
* Example input image: |

* Then let’s look at the outputs of different convolutional layers

134

Visualization (cont.)

* The outputs of the filters in the first layer

conv2d_1

0 500 1000 1500 2000

135

Visualization (cont.)

* The outputs of the filters in the fourth layer

conv2d_4

100

150

350

136

)

cont

* The outputs of the filters in the ninth layer

1zation

isual

V

conv2d 9

137

Visualization (cont.)

* Summary
* The filters in the deeper layers characterize more abstract patterns

* Layers that are deeper in the network visualize more training data specific
features

* While the earlier layers tend to visualize general patterns like edges, texture,
background

1 X 1 convolution

* Here we introduce a special filter, which asasizeof 1 X 1

—

Convolution with large kernel Convolution with 1*1 kernel

* The 1 X 1 convolution cannot detect edges with any shape, sois it
really useful? Or is it redundant?

139

1 X 1 convolution (cont.)

* The 1 X 1 convolution is very useful as it can reduce the computation
complexity in CNN!

-~ —
P Pl
rrrrrrrrrrrrr
zzzzzz

4x4x5 1x1x5 4x4x3

* Help reduce the number of channels

* In the example above, the size of the input data is reduced from 4 X 4 X 5
to4 X4 Xx3

e Usually we assume the depth of the filter is the same with depth of data

140

1 X 1 convolution (cont.)

1 X 1 convolution filter is usually followed by 3 X 3 or other bigger
filters. In this way, the computational complexity is greatly reduced

* This architecture is used in Google’s inception model

1x1 convolutions

-

Filter
concatenation

3x3 convolutions

Previous layer

[5x5 convolutions

-

3x3 max pooling

>

(a) Inception module, naive version

1x1 convolutions

s

—

Filter
concatenation

N e——

Sx5 convolutions I 1x1 convolutions

3x3 convolutions
l | {
. | f ‘ f
1x1 convolutions 1x1 convolutions 3x3 max pooling
L > - —g

S N—

Previous layer

(b) Inception module with dimension reductions

141

Filter depth

filters always extend the full depth of the input

volume
32x32x3 Image \
Sx5x3 filter
32 ,|
I Convolve the filter with the image i.e.

“slide over the image spatially, computing
32 dot products”

3 142

Stride

* The distance that the filter is moved in each step
* Examples of stride=1 and stride=2

143

Padding

* A solution to the problem of data shrinking

e Data shrinking: as convolution can only happen within the border of
the input data, the size of the data will become smaller as the
network becomes deeper

@)
* 1D Example: g@é
* suppose the filter width is 6,
the data will shrink 5 pixel each layer)Zéé% Zé})
@),
Oégggéoooddé@§%04

Padding (cont.)

* Add numbers (usually zero, called) around the input
data to make sure that the size of the output data is the same as that
of the input data

* Left padding = 3, right padding = 2
e Usually left padding + right padding = filter width — 1
Q00 HOOOOOOOOOOOOOOLe®

céﬁggbooooooooobégggb
%@koooooooooﬂcp&
céiggboooooooooééégﬁb ;

Example

* Input 7x7 (white area)
» 3x3 filter, applied with stride 1
* pad with 1 pixel border (dark area)

0 * => what is the size of the output?

Example (cont.)

* Input 7x7 (white area)
» 3x3 filter, applied with stride 1
* pad with 1 pixel border (dark area)

0 * => what is the size of the output?

0 * 7x7 output!

Example (cont.)

* Input 7x7 (white area)
» 3x3 filter, applied with stride 1
* pad with 1 pixel border (dark area)

0 * => what is the size of the output?

0 * 7x7 output!

* |[n general, convolution layers with stride 1,
filters of size FxF, and zero-padding with
(will size spatially)

e e.g. F=3=>zeropadwithl

F =5 =>zero pad with 2
F =7 =>zero pad with 3

Example 2

* Input volume: 32 X 32 X 3
10 5 X 5 filters with stride 1, pad 2

N\

e Qutput volume size: ?

AN

Example 2 (cont.)

* Input volume: 32 X 32 X 3
10 5 X 5 filters with stride 1, pad 2

N\

e Qutput volume size: ?

* Filter size 5, pad=(F — 1)/2,
so keep the size 32 X 32 spatially

e 10 5 X 5 filters means 10 5 X 5 X 3 filters
eS032x32x10

AN

Pooling layer

* Make the representations denser and more manageable

e Operate over each activation map independently:
224x224x64
112x112x64

pool

—

> o 112
224 downsampling

224 o

Example of pooling layer

* Pooling of size 2 X 2 with stride 2

Single depth slice

" i 2 | 4
max pool with 2x2 filters
2iEGN 7 | 8 and stride 2 6 8
3 | 2 IEiNES 3| 4
1 | 2 S
y

* Most common pooling operations are max and average

152

RelU activation function

Its derivative

* ReLU (Rectified linear unity)
function ReLU'(z) = {
ReLU(z) = max(0, z)

1 ifz>0
0 ifz<0

ReLU can be approximated by softplus function
fSoftplus(-T) — I'Dg(l + BI)

3 :
—Softplus * RelU’s gradient doesn't vanish as x increases
ol [Rectifier * Speed up training of neural networks
* Since the gradient computation is very simple
fill | : * The computational step is simple, no exponentials, no
= O e e S multiplication or division operations (compared to others)

The gradient on positive portion is larger than
sigmoid or tanh functions

* Update more rapidly

\

1t i i 1 * The left “dead neuron” part can be ameliorated by Leaky
-3 -2 -1 0 1 2 E) RelU 153

A typical CNN structure

* Convolution/Activation (ReLU)/Pooling layers appear in flexible order
and flexible repetitions

CONV | CONV

o

gplane
ship

horse

~|E
,.;J‘]
i
=
g

154

Training Techniques

Dropout

* Dropout randomly ‘drops’ units from a layer on each training step,
creating ‘sub-architectures’ within the model

* It can be viewed as a type of sampling a small network within a large
network

* Prevent neural networks from overfitting

(a) Standard Neural Net (b) After applying dropout.

Srivastava, Nitish, et al. "Dropout: A simple way to prevent neural networks from overfitting." The Journal of Machine Learning;
Research 15.1 (2014): 1929-1958.

Dropout (cont.)

* Forces the network to have a redundant representation

* Increase robustness in prediction power

T

has an ear

has a tall x

s furry —X—— . cat
. score

has claws +/
mischievous

look

157

Weights initialization

* If the weights in a network start too small,
* then the signal shrinks as it passes through each layer until it’s too tiny to be
useful
* If the weights in a network start too large,

* then the signal grows as it passes through each layer until it’s too massive to
be useful

Weights initialization (cont.)
e All zero initialization
 Small random numbers

* Draw weights from a Gaussian distribution

e with the standard deviation of\/%

* nis the number of inputs to the ending neuron

159

Batch normalization

* Batch training:

* Given a set of data, each time a small portion of data are put into the model
for training

e Extreme example

* Suppose we are going to learn some pattern of people, and the input data are
people’s weights and heights

* Unluckily, women and men are divided into two batches when we randomly
split the data

* As the weights and heights of women are very different from these of men,
the neural network have to make huge changes to the weight when we switch
the batch during training, which will cause slow convergence or even
divergence

Batch normalization (cont.)

* The problem in the example is called Internal Covariate Shift
 The solution to Internal Covariate Shift is batch normalization

* Suppose Zj(i) is the it" input for the jt neuron in the input layer

m

1 i
H;‘:EZZ})

* Or normalize the whole input layer together

Batch normalization (cont.)

e 2D example

162

Example of batch normalization

* Without batch normalization
* Slow convergence and fluctuation

Accuracy

10
09
08

07 4
06 1
05 1
044
03 1

02
01
00

Validation Accuracy During Training

e —————

- Without Batch Norm
With Batch Norm

500 1000 1500 2000 2500 3000
Training steps

Accuracy

10
09
08

07 4

06
05

04 1
03

02

01 1

00

Validation Accuracy During Training

/_//’f—,—«
.
J
o
/
/
J
v
L
A —=_Without Batch Norm
With Batch Norm
0 10000 20000 30000 40000 50000

Training steps

163

AlexNet [Krizhevsky et al. 2012]

e AlexNet:

55
\
' 27 \ o -
\ \
\ 13 13 \13
55 ; \
\ 13
N el [P H\—H 34 " - dense| |dense
A\ VaFE 5 = AL -\~ v] El| BN
a\/ [\ \\ = Tk .) LT kel '\ dense
W\ \\I" 2 | = R 192 192 128 204 2048 \
e ,-‘ \ :) 1 . -‘ \ : - \
\ : \

28 A E A\
e\ \ 3 \ rlon, \ KX -\ N/ \| |/ \
AL R r Ry ooy ¥/ \
224 | sl | H 3] [I \I 3] -1
[; | \ J-s [= < - | [*3 ,‘] i * 13 dense’| [dense|
AN \ [Al \ \
\\ 1] g \‘ . - ",‘I,__J 3:) '\'-,F \“\
11 \ 192 192 128 Max
\ \ \ 204t 2048
22‘\‘\ Stride, Max 38 Max pooling
Vofa \ pooling pooling
a8

Input: 227x227x3 images
First layer (CONV1): 96 11x11 kernels applied at stride 4
Q: what is the output volume size?

164

AlexNet (cont.)

e AlexNet:

55

" . '55

Sm;\

\
ofa \ 1

a8

Input: 227x227x3 images

First layer (CONV1): 96 11x11 kernels applied at stride 4

27

\
\\
\

Max
pooling

128

Max
pooling

Q: what is the output volume size? Hint: (227-11)/4+1 = 55 [55x55x96]

\ 13 \13 \\
IF_la 3 13 - dense| |dense)
Hat—= |

. -\l s 3] T_ o} o 4 4 \

.\] 3 . \ / \ ',n’ \

. o TAPAT L VO Ve o T)
192 192 128 \i/ 2048 \ / 2048 \dense
o \ ; A M A M\

R \ \ 13 \13 ,"/ ‘\,“ / \
o '~.\ 3 i — /I \'* / '-.‘

[f’ I [ﬂ 1

.1’3 4 \ SRR 2 13 dense | [dense

X \

192 192 128 Max -,
pooling 20%; 2048

165

AlexNet (cont.)

e AlexNet:

\ : 13
N [27 X H_ 1 A — dense| |dense
\ 3\ ———3 kl . 3] T_ . ; ;
\ 7 \ &] 3
\ [S Sy \ \

\ \ f/ \ f
W _ \/ \/
\ 1 { A A X = \
1l 7 \s5 27 - P, AN A A \ /\] /\ \
, . \ , NS A\ \ |\a3 \ [\13 \ .. /X !\ \
v—m..\ \ e \ *erte, \ KN E R \ \ / // \
\ | 5‘\' e,) 5 e /,r K <
224 . 5 | . 3] [T'k TR [3] -1
\ Lol \ i,) X \
2 \ 192 192 128 Max

224\\\ Stride. Max 128 Max pooling
Vofda |\ | pooling pooling
a8

Input: 227x227x3 images

First layer (CONV1): 96 11x11 kernels applied at stride 4

Q: what is the output volume size? Hint: (227-11)/4+1 = 55 [55x55x96]
Q: What is the total number of parameters in this layer?

166

AlexNet (cont.)

e AlexNet:

1%\
“‘\-\‘
\

224

\ .:":I- |
B
\as

J

22 4\:\\]
\

55

\
Stnde\\
of 4
a8

Input: 227x227x3 images
First layer (CONV1): 96 11x11 kernels applied at stride 4
Q: what is the output volume size? Hint: (227-11)/4+1 = 55 [55x55%96]

Q: What is the total number of parameters in this layer? (11*11*3)*96 = 35K

Max
pooling

128

\13 13 \13 \
\
\ \
H_ 13 £ 13 - dense| |dense)
e A
'\v,l # 3] T -2 T 4 4
N | I
4) \ /
. : \ / - -
192 192 128 204 ¢
- \ 3 — X —
(A A ! ' \
\13 \13 \ \13 \ /
\ *racte, \ KN 35 \ \ WY,
Ry r : 1 |
[T" B \1 3] ¥
\ ‘[*3 ,‘] T 2 13 dense | [dense
N \ \
F \
\
192 192 128 Max -
pooling 203 2048

Computation example

227 3
CONV Overlapping
11x11, Max POOL
stride=4, 96 Ix3, g
96 kernels stride=2
r."____________
1 I (227-11)i4 +1 (55-3)/2 +1
! =55 =27
-39
227
CONV CONV
3x3,pad=1 384 3x3,pad=1
384 kemels 256 kemels
(13+271-3)1 {13+2°1-3)1
+1 =13 +1 =13
13

27

2048 \dense

13 dense
- 128 227’
1; dense
Max 128 Max = :::Iing 2098
pooling pooling
Overlapping
CONV Max POOL CONV
5x5,pad=2 3x3, 258 3x3,pad=1
256 kernels stride=2 384 kernels
(27+2*2-5)1 (27-3)/2 +1 (13+2°1-3)1
+1 =27 =13 +1 =13
13
e O] O
Max POOL
33, 256 O
stride=2
(13-3)2 +1 FC) FC) .
: Ol |10 1O
[}
9216 O O 1000
Softmax

4096 4096

168

Recurrent Neural Networks

RNN

Unfold

OOAI - R

=~ v @)

0

Oe
L
|
O
ut

—_—
<
<
<

—

(n

RNN (cont.) v

W

So:} =) R AWy AN, S,
Unfold w w w

* X, is the input at time t . U U U

* 5; is the hidden state at time t ¥ e % Xia1

* |tis the “memory” of the network
* |s calculated based on previous hidden state and the input at the current step
s¢ = f(Uxy + Wse_4)
where f is nonlinear activation function, such as tanh, RelLU
* 0; is the output at time ¢t

* E.g. If we want to predict the next word in a sentence, o; is a vector of
probabilities over certain vocabulary

RNN (cont.) 1 I P)

S
S t—1 t t+1
—_— —_— e —_—
d » —)—0=~>05—>0"
. Unfold ’ TU TU
* S; isthe “memory” attime t
X X X X

* 0; is based on memory attime t

* RNN share weights U and W
e Unlike traditional NN
* Greatly reduce the total number of parameters we need to learn

* The output at each time step might be unnecessary

* E.g. When predicting the sentiment of a sentence we may only care about the
final output, not the sentiment after each word

* We may not need inputs at each time step

* Main feature:
* |s the hidden state, which captures some information about a sequence

Recall RNN

Computational graph of RNN

* Re-use the same weight matrix at every time-step

174

Different RNNs

one to one one to many many to one

Vanilla NN Image captioning Text classification
Text generation Sentiment analysis

many to many

Machine translation
Dialogue system

many to many

Stock price estimation
Video frame classification

175

Example 1: Character-level language model

* Given previous words/characters,
predict the next

* VVocabulary: [h, e, |, O]
* Example of training sequence:
“Hello”

input layer

1
0
0
0
‘lh”

O |loo-0
|
= o200

input chars:

“Z= |lo=_00

Example 1: Character-level language model

* Given previous words/characters,
predict the next

* VVocabulary: [h, e, |, O]

* Example of training sequence:

“Hello” 0.3 1.0

0.1 -0.3

hidden layer | .0.1 » 0.3 -0.5 W‘hrl 0.9

0.9 0.1 -0.3 0.7
s s

ht — tanh([’[/hhht_l —+ H/mha:t) T T W_xh

1 0 0 0
: 0 1 0 0
input layer 0 0 1 1
0 0 0 0

input chars: “h” “e” = i

177

Example 1: Character-level language model

* Given previous words/characters,

. target chars: ‘e’ 7 11 “I” ‘0"
predict the next o = o T
a 2.2 0.3 0.5 1.5
* Vocabulary: [h, e, |, 0] Wipdtiarsr N 1.0 19 0.1
4.1 1.2 1.1 2.2

* Example of training sequence: ! ‘ [T W_ny
“Hello” 0.3 1.0 0.1 |w hh|-0-3
hidden layer | -0.1 - 0.3 = -0.5 ——{ 0.9
0.9 0.1 0.3 0.7
. ,

ht — tanh(Whhht_l e thmt) T T | W_xh
1 0 0 0
input layer 0 1 0 0
— 0 0 1 1
Yt = Wh,yht 0 0 0 0
input chars: “h” “e” I g

178

Example 1: Character-level language model

“I'V/\
t

* Given previous words/characters,
predict the next

* VVocabulary: [h, e, |, O]
* Example of training sequence:
“Hello”

* At test time, sample characters one
at a time, feed back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

7
f

(:I‘ﬂ
1

“o"

4
03 25 A1 A1
A3 20 A7 .02
.00 05 .68 .08
84 50 .03 79
} t t t
1.0 05 0.1 0.2
2.2 0.3 0.5 15
3.0 1.0 1.9 01
4.1 1.2 .1 2.2
4 'y
| T [w_hy
0.3 1.0 0.1 |w byl -0:3
01103} 05—+ 0.9
0.9 0.1 0.3 0.7
'y A
\ T Tw_xr
1 0 0 0 |
0 1 0 0 |
0 0 1 1 ‘
0 0 0 0
Qh" “e" ul I‘I',

179

Example 3: Image captioning

* Using RNN to explain the content in an Image

__image | =

est image

conv-64
conv-64
maxpool
conv-128
conv-128
maxpool

conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool
FC-4096

FC.4096 Remove the last two layers in CNN

F 0
SC(XX 180

Example 3: Image captioning (cont.)

test image
conv-64

conv-64
maxpool

conv-128

conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

FC-4096

FC.4096 < Preparing the initial input for RNN

<START=> 181

Example 3: Image captioning (cont.)

image B

conv-64

conv-64
mupoul
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv=-512
maxpool
conv-512
conv-512
maxpool

FC-4096
FC-4096

Wih

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

Add a new item to connect CNN to RNN

182

Example 3: Image captioning (cont.)

image | -

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool

conv-256
conv-256
maxpool P

conv-512
conu-512 sample!

maxpool hO

conv-512
conv-512

maxpool

FC-4096
FC-4096 =3TA straw

<START=> 183

Example 3: Image captioning (cont.)

i test image
conv-64
conv-64
rnaxpoul

conv-128

conv-128
maxpool

conv-256 yO yi
conv-256
maxpool I T

conv-512
conv=512

maxpool

conv-512
conv-512

maxpool

FC-4096 o
FC-4096 =5TA straw

<START> 184

Example 3: Image captioning (cont.)

ime=) < test image

conv-64

conv-64
mupool

conv-128

conv-128
maxpool

conv-256

conv-256
maxpool L T

conv-512

conv-512 sample!

r— ho | hi

conv-512
conv-512

maxpool

FC-4096
FC-4096 =5TA straw hat

<START> 185

Example 3: Image captioning (cont.)

image | -

conv-64

test image

conv-64
mupool

conv-128

conv-128
maxpool

conv-256 YU'
conv-256

maxpool + T 1+

conv-512

conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096 <5TA straw hat

<START> 186

Example 3: Image captioning (cont.)

image | -

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool

conv-256 y0 y1 y2
conv-256
maxpool A T A \ Sample

conv-512 <END> token

conv-512 _ . .
maxpool ho | h1 || n2 => finish.
conv-512
A ['Y A
conv-512
maxpool
FC-4096 0
STA hat
FC-4096 ‘E:T} straw

<START=> 187

0
O Ot—f Ot Ot+j‘
A1 4 14 v VT
Tra | n I n g s T W W Tsr—f Tsr Sii1
TD Unfold T W T W T W
U U U U
e Still use backpropagation . X x x|
* But now weights are shared by all time steps
e Backpropagation Through Time (BPTT)
* E.g., in order to calculate the gradient at t = 4, we would need to
backpropagate 3 steps and sum up the gradients 5 B B BB

* s, =tanh(Ux; + Ws;_ 1)

i, = softmax(V's;)

* Loss, by cross entropy E (Y1, 9:) = —yi log g @ @—’@—’

* vy is the correct word at time ¢t E(y,7) :@Et(yt, Ut)

* V. is prediction
=—) ylogy,
t

188

Backpropagation Through Time (BPTT)

* Recall that our goal is to calculate the gradients of the error with
respect to parameters U,V, W

: : OE OE
* Also the gradients sum over time — = Y, — ,
ow ow O o, 0, 0,
J0E3 _ 0E30Yy3 (0s3 , 0s30s; v] v vT |
¢ S5 ... — ~ +__+... s v w St-1 5t Ste1
oW 393 0s3 \OW 3s, OW (» —)—0 >0 ~>0"~
e s; = tanh(Ux; + W's,) v] Hnfold U TU U

* So to get gradients of time t = 3, we need to
backpropagate gradientstot = 0

Summary of BPTT

* |t is just backpropagation on the unrolled RNN by summing |
over all gradients for W and U at each time step |

° The pr0b|em
., 9E3 _ 0E3 0y3 (653 + 053 957 4+)
oW 0y3 0s3 \OW ~ 0ds; OW
‘ .

)) . 3 . .
OF3 B OFE3 013 Js; 05

* This Jacobian matrix (derivative w.r.t. a vector) has 2-norm less than 1
* As an intuition, the derivative of tanh is bounded by 1

* Thus, with small values in multiple matrix multiplications, the gradient values are
shrinking exponentially fast, eventually vanishing completely after a few time steps

* Gradient contributions from “far away” steps become zero
* You end up not learning long-range dependencies
* Not exclusive to RNNs. It’s just that RNNs tend to be very deep (as sentence length)

s

len

127

: Vanishing grad

127

Demo of RNN vs LSTM

* RNN vs LSTM gradients on the input weight matrix https://imgur.com/gallery/vaNahKE

* Erroris generated at 128th step and propagated back. No error from other steps

191

* Initial weights sampled from Normal Distribution in (-0.1, 0.1)

https://imgur.com/gallery/vaNahKE

The problem of long-term dependencies

* One of the appeals of RNNs is the idea that they might be able to
connect previous information to the present task, such as using
previous video frames might inform the understanding of the present

frame . @ @ ?
* RNN usually works well for recent information A . A . A A [A
e E.g. The clouds are in the sky. 6 (,g é é

* But might work worse for further back context
 E.g. | grew up in France... | speak fluent French.

I

A

® ®
1
» A — A
& & &

>0

@—>—@
&> @

Long short-term memory (LSTM)

* Hochreiter & Schmidhuber [1997]
* A variant of RNN, capable of learning long-term dependencies
* Can remember information for long periods of time

QR R

| |
&) ® &

Remember the architecture of RNN cells, we will make many changes on it

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

193

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM at a glance

t t t
- N N R
> ———— —»
A letel A
| g 7 7

&) ©, &)
O—>>->—<:

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

194

* Horizontal line running through the top of the diagram

 Like a conveyer

* Run straight down the entire chain, with only some minor linear interactions
e LSTM uses to carefully remove or add information to the cell state

Y (:
i x

L >

LSTM (cont.)

* Three gates are governed by sigmoid units
e Describing how much of each component should be let through
* “let nothing through” (zero value)/“let everything through” (one value)

. »

—®—
!
|

196

LSTM (cont.)

* The first gate is
* Decide what information we’re going to throw away from the cell state
e Output a numberin (0,1) for each number in the cell state
* 1/0: completely keep/remove this

Forget Gate:

ft = T (I‘{’rf'[ht—lg xt] T bf)
|)
|

Concatenate

T

I 0 — > <

Meural Network Pointwise Vector
Layer Operation Transfer

LSTM (cont.)

* Next is to decide what new information we’re going to store in the
cell state
* The sigmoid layer is the , deciding which values we’ll update

* The tanh layer creates a vector of new candidate values C; that should be
added to the state

Input Gate Layer
?:t =ag (Wi'[hg_l,.’ﬂt} -+ bz)

i

hi—y

2 New contribution to cell state

] O — > <] Cy = tanh(We-[h—1, 7] + be)

MNeural Network Pointwise Vector l '
Layer Operation Transfer e nate GO '

Classic heuron

LSTM (cont.)

* Multiply the old state by f;
* Forgetting the things from previous state

e Add new candidate values

S—@——@— Update Cell State (memory):

f‘T “(’%% Ci=fexCr_1 + 1 % ét

LSTM (cont.)

* Last decide the output h;
* Filtered (tanh) version of the cell state

* The sigmoid layer decides what parts of the cell state we’re going to output
h;_41, x; are like context

hiy
T Output Gate Layer

Or = O-(IMJ [ht—laxt] T bf})

Output to next layer

h; = oy * tanh (C})

LSTM hyperparameter tuning

e Watch out for overfitting

* Regularization helps: regularization methods include L1, L2, and
dropout among others.

* The larger the network, the more powerful, but also easier to overfit.
Don’t want to try to learn a million parameters from 10,000 examples

* parameters > examples = trouble
* More data is usually better
* Train over multiple epochs (complete passes through the dataset)
* The learning rate is the single most important hyper parameter

