TopRank: A Practical Algorithm for Online Stochastic Ranking

Tor Lattimore, Branislav Kveton, Shuai Li, Csaba Szepesvári

Motivation
- Online learning to rank
 - A sequential decision-making problem
 - Recommends a list of items to user
 - Receives click feedback from user
- Common click models: Cascade, Position-Based Model, Document-Based, etc
- Existing works:
 1. Either focus on a specific model and might perform poorly in different models
 2. Or assume a general model, but propose unnatural algorithms that discard lots of data

Setting
- L items, K ≤ L positions
- Action set A = {1, ..., K}
- For each a ∈ A, o(a) is the item placed at the ith position
- In each round t:
 - The learner chooses an action A_t ∈ A
 - The learner observes click feedback C_{t1}, ..., C_{tK}
- Assume click probability on item i = o(a) is given by
 \[P(C_{ti} = 1 | A_t = a) = v_{ti} \]
- The goal of the learner is to minimize the expected cumulative regret
 \[R_T = \max_{A ∈ \calA} \sum_{t=1}^T \sum_{k=1}^K (v_{tk} - v_{tk}) \]

Assumptions
Assumption 1. \(v(a, k) = 0 \) for all \(k > K \).
- There exists an unknown attractiveness function \(\alpha : [L] \rightarrow [0, 1] \).
- An action \(a \) is optimal if \(o(a)(k) = \max_{a'} o(a')(k) \) for all \(k \in [K] \).
Assumption 2. Let \(a^* \in A \) be an optimal action. Then \(\max_{k \in [K]} \sum_{a' \in A} v_{k} = \sum_{a' \in A} v(a', a^*) \).
Assumption 3. Suppose \(v(a, k) ≥ o(a) \) and \(\alpha \rightarrow A \) only exchanges i and j. Then \(\forall a \in A \),
\[v(a, k) ≥ \sum_{i=1}^T (1 - o(\ell)) \alpha(i) \]

Illustration
Suppose \(a(k) ≥ o(k) \). Then \(v(a, 1) ≥ v(a, 2) \) and \(v(a, 0) ≤ v(a', k) \).

Algorithm
- Given relation \(G \subseteq [K]^2 \) and \(X \subseteq [L], \text{min}(X) = (i \in X, (i, j) \notin G \text{ for all } j \in X) \).
- Let \(\mathcal{A} = \{P_1, ..., P_{16}\} \) be the set of actions \(a \) where the items in \(P_i \) are placed at the first \(|P_i| \) positions, the items in \(P_2 \) are placed at the next \(|P_2| \) positions, and so on.

TopRank
1. \(G_t = \emptyset \) and \(v + \frac{\sqrt{\pi}}{2} \).
2. For \(t = 1, ..., \infty \) do
3. \(i = 0 \).
4. While \([L] \setminus \bigcup_{t=1}^T P_t \neq \emptyset \) do
5. \(i = i + 1 \).
6. \(P_i \leftarrow \min_{C_{i}} \{G_t \setminus \bigcup_{t=1}^T P_t\} \).
7. Choose \(A_t \) uniformly at random from \(\mathcal{A} \).
8. Observe click indicators \(C_{t1}, ..., C_{tK} \).
9. For all \((i, j) \notin G_t \) do
10. \(U_{ij} \leftarrow \sum_{j \in X} S_{ij} \) if \(j \in X \) for some \(d \) otherwise
11. \(S_{ij} = \sum_{j \in X} S_{ij} \) and \(N_{ij} = \sum_{j \in X} U_{ij} \).
12. \(\alpha_{ij} = \frac{G_{ij}}{\sqrt{\gamma N_{ij}}} \) and \(N_{ij} > 0 \).

Illustration
Suppose \(L = 5 \) and \(K = 4 \) and the relation \(G_t = \{1, 1, 5, 2, 3\} \).
To find the first three positions in the ranking will contain items from \(P_1 = \{1, 2, 4\} \), but with random order. The fourth position will be item 3 and item 5 is not shown to the user.

References