Learning to Rank with Click Models: From Online Algorithms to Offline Evaluations

Shuai LI

The Chinese University of Hong Kong
Outline

1. Motivation
2. Background
3. Problem Definition – Online
4. Click Models
 - Cascade Model (CM)
 - ICML’2016
 - AAAI’2018
 - IJCAI’2019
 - Dependent Click Model – A co-authored work
 - Position-Based Model
 - General Click Models – A co-authored work, ICML’2019
5. Offline Evaluations – KDD’2018
6. Conclusions
Outline

1 Motivation

2 Background

3 Problem Definition – Online

4 Click Models
 • Cascade Model (CM)
 • ICML’2016
 • AAAI’2018
 • IJCAI’2019
 • Dependent Click Model – A co-authored work
 • Position-Based Model
 • General Click Models – A co-authored work, ICML’2019

5 Offline Evaluations – KDD’2018

6 Conclusions
Motivation – Learning to Rank

Amazon, YouTube, Facebook, Netflix, Taobao
Outline

1 Motivation

2 Background

3 Problem Definition – Online

4 Click Models
 - Cascade Model (CM)
 - ICML’2016
 - AAAI’2018
 - IJCAI’2019
 - Dependent Click Model – A co-authored work
 - Position-Based Model
 - General Click Models – A co-authored work, ICML’2019

5 Offline Evaluations – KDD’2018

6 Conclusions
A special case of reinforcement learning

There are L arms
- Each arm a has an unknown reward distribution with unknown mean α_a
- The best arm is $a^* = \arg\max \alpha_a$
Background – Multi-armed Bandit Setting

- At each time t
 - The learning agent selects one arm a_t
 - Observe the reward $X_{a_t,t}$

The objective is to minimize the regret in T rounds $R(T) = T \alpha^* - E[T \sum_{t=1}^{T} \alpha_{a_t}]$

Balance the trade-off between exploitation and exploration

- Exploitation: select arms that yield good results so far
- Exploration: select arms that have not been tried much before
Background – Multi-armed Bandit Setting

- At each time t
 - The learning agent selects one arm a_t
 - Observe the reward $X_{a_t,t}$
- The objective is to minimize the regret in T rounds

$$R(T) = T\alpha^* - \mathbb{E}\left[\sum_{t=1}^{T} \alpha_{a_t}\right]$$
Background – Multi-armed Bandit Setting

- At each time t
 - The learning agent selects one arm a_t
 - Observe the reward $X_{a_t,t}$

- The objective is to minimize the regret in T rounds

$$R(T) = T\alpha^* - \mathbb{E}\left[\sum_{t=1}^{T} \alpha_{a_t} \right]$$

- Balance the trade-off between exploitation and exploration
 - **Exploitation**: select arms that yield good results so far
 - **Exploration**: select arms that have not been tried much before
Background – Upper Confidence Bound

- **UCB (Upper Confidence Bound) [ACF’02]**

- **UCB policy:** select

\[
a_t = \arg\max_a \hat{\alpha}_{a,t} + \sqrt{\frac{3 \ln(t)}{2 T_a(t)}},
\]

where

- \(\hat{\alpha}_{a,t}\) is the empirical mean of arm \(a\) in time \(t\) — **Exploitation**
- \(T_a(t)\) is the played times of arm \(a\) — **Exploration**
Background – Upper Confidence Bound

• UCB (Upper Confidence Bound) [ACF’02]

 - UCB policy: select

 $$a_t = \arg\max_a \hat{\alpha}_{a,t} + \sqrt{\frac{3 \ln(t)}{2T_a(t)}}$$

 where

 - $$\hat{\alpha}_{a,t}$$ is the empirical mean of arm $$a$$ in time $$t$$ — **Exploitation**
 - $$T_a(t)$$ is the played times of arm $$a$$ — **Exploration**
 - Gap-dependent bound $$O\left(\frac{L}{\Delta} \log(T)\right)$$ where $$\Delta = \min_{\alpha_a < \alpha^*} \alpha^* - \alpha_a$$, match lower bound
 - Gap-free bound $$O\left(\sqrt{LT \log(T)}\right)$$ tight up to a factor of $$\sqrt{\log(T)}$$
1 Motivation

2 Background

3 Problem Definition – Online

4 Click Models
 - Cascade Model (CM)
 - ICML’2016
 - AAAI’2018
 - IJCAI’2019
 - Dependent Click Model – A co-authored work
 - Position-Based Model
 - General Click Models – A co-authored work, ICML’2019

5 Offline Evaluations – KDD’2018

6 Conclusions
Online Learning to Rank

• There are L items
 • Each item a with an unknown attractiveness $\alpha(a)$
• There are K positions
There are L items

- Each item a with an unknown attractiveness $\alpha(a)$

There are K positions

At time t

- The learning agent selects a list of items $A_t = (a^t_1, \ldots, a^t_K)$
- Receive the click feedback $C_t \in \{0, 1\}^K$
There are L items
- Each item a with an unknown attractiveness $\alpha(a)$

There are K positions

At time t
- The learning agent selects a list of items $A_t = (a^t_1, \ldots, a^t_K)$
- Receive the click feedback $C_t \in \{0, 1\}^K$

The objective is to minimize the regret over T rounds

$$R(T) = T \ r(A^*) - \mathbb{E} \left[\sum_{t=1}^{T} r(A_t) \right]$$

where
- $r(A)$ is the reward of list A
- $A^* = (1, 2, \ldots, K)$ by assuming arms are ordered by $\alpha(1) \geq \alpha(2) \geq \cdots \geq \alpha(L)$
Outline

1. Motivation
2. Background
3. Problem Definition – Online
4. Click Models
 - Cascade Model (CM)
 - ICML’2016
 - AAAI’2018
 - IJCAI’2019
 - Dependent Click Model – A co-authored work
 - Position-Based Model
 - General Click Models – A co-authored work, ICML’2019
5. Offline Evaluations – KDD’2018
6. Conclusions
Contents

1. Motivation
2. Background
3. Problem Definition – Online
4. Click Models
 - Cascade Model (CM)
 - ICML’2016
 - AAAI’2018
 - IJCAI’2019
 - Dependent Click Model – A co-authored work
 - Position-Based Model
 - General Click Models – A co-authored work, ICML’2019
5. Offline Evaluations – KDD’2018
6. Conclusions
Click models describe how users interact with a list of items.
Click Models

- Click models describe how users interact with a list of items
- Cascade Model (CM)
 - Assumes the user checks the list from position 1 to position K, clicks at the first satisfying item and stops

\[
\text{At most 1 click } \quad r(A) = 1 - \prod_{k=1}^{K} (1 - \alpha(a_k)) = \max(\alpha(a_1),...,\alpha(a_K))
\]

The meaning of received feedback (0, 0, 1, 0, 0)
Click Models

- Click models describe how users interact with a list of items
- Cascade Model (CM)
 - Assumes the user checks the list from position 1 to position K, clicks at the first satisfying item and stops
 - At most 1 click
Click Models

- Click models describe how users interact with a list of items
- Cascade Model (CM)
 - Assumes the user checks the list from position 1 to position \(K \), clicks at the first satisfying item and stops
 - At most 1 click
 - \(r(A) = 1 - \prod_{k=1}^{K} (1 - \alpha(a_k)) = \text{OR}(\alpha(a_1), \ldots, \alpha(a_K)) \)
Click Models

- Click models describe how users interact with a list of items
- Cascade Model (CM)
 - Assumes the user checks the list from position 1 to position K, clicks at the first satisfying item and stops
 - At most 1 click
 - $r(A) = 1 - \prod_{k=1}^{K}(1 - \alpha(a_k)) = OR(\alpha(a_1), \ldots, \alpha(a_K))$
 - The meaning of received feedback $(0, 0, 1, 0, 0)$
Click Models

- Click models describe how users interact with a list of items
- Cascade Model (CM)
 - Assumes the user checks the list from position 1 to position K, clicks at the first satisfying item and stops
 - At most 1 click
 - $r(A) = 1 - \prod_{k=1}^{K} (1 - \alpha(a_k)) = \text{OR}(\alpha(a_1), \ldots, \alpha(a_K))$
 - The meaning of received feedback $(0, 0, 1, 0, 0)$
Click Models

- Click models describe how users interact with a list of items
- Cascade Model (CM)
 - Assumes the user checks the list from position 1 to position K, clicks at the first satisfying item and stops
 - At most 1 click
 - $r(A) = 1 - \prod_{k=1}^{K} (1 - \alpha(a_k)) = OR(\alpha(a_1), \ldots, \alpha(a_K))$
 - The meaning of received feedback $(0, 0, 1, 0, 0)$

<table>
<thead>
<tr>
<th></th>
<th>Click Model</th>
<th>Regret</th>
</tr>
</thead>
<tbody>
<tr>
<td>[KSWA, 2015]</td>
<td>CM</td>
<td>$O\left(\frac{L}{\Delta} \log(T)\right)$</td>
</tr>
</tbody>
</table>
Outline

1. Motivation
2. Background
3. Problem Definition – Online
4. Click Models
 - Cascade Model (CM)
 - ICML’2016
 - AAAI’2018
 - IJCAI’2019
 - Dependent Click Model – A co-authored work
 - Position-Based Model
 - General Click Models – A co-authored work, ICML’2019
5. Offline Evaluations – KDD’2018
6. Conclusions
Contextual Bandit Setting

- **Contexts**
 - User profiles, search keywords
 - Important for search and recommendations
Contextual Bandit Setting

- **Contexts**
 - User profiles, search keywords
 - Important for search and recommendations
- **Assume each item** a **is represented by** $x_{t,a} \in \mathbb{R}^d$
Contextual Bandit Setting

- **Contexts**
 - User profiles, search keywords
 - Important for search and recommendations
- Assume each item \(a \) is represented by \(x_{t,a} \in \mathbb{R}^d \)
- Assume the attractiveness for item \(a \)
 \[
 \alpha_t(a) = \theta^\top x_{t,a}
 \]
 by a fixed but unknown weight vector \(\theta \)
Contextual Bandit Setting

- **Contexts**
 - User profiles, search keywords
 - Important for search and recommendations
- Assume each item a is represented by $x_{t,a} \in \mathbb{R}^d$
- Assume the attractiveness for item a

$$\alpha_t(a) = \theta^\top x_{t,a}$$

by a fixed but unknown weight vector θ
- When $x_{t,a}$’s are one-hot representations, and $\theta = (\alpha(1), \ldots, \alpha(L))$, it returns to multi-armed bandit setting.
Contextual Combinatorial Cascading Bandits [LWZC, ICML’2016] – Algorithm

- C³-UCB Algorithm
 - Initialization: \(\hat{\theta} = 0 \in \mathbb{R}^{d \times 1} \), \(V = \lambda I \in \mathbb{R}^{d \times d} \), \(b = 0 \in \mathbb{R}^{d \times 1} \)
Contextual Combinatorial Cascading Bandits [LWZC, ICML’2016] – Algorithm

\(C^3 \)-UCB Algorithm

- Initialization: \(\hat{\theta} = 0 \in \mathbb{R}^{d \times 1} \), \(V = \lambda I \in \mathbb{R}^{d \times d} \), \(b = 0 \in \mathbb{R}^{d \times 1} \)
- For time \(t = 1, 2, \ldots \)
Contextual Combinatorial Cascading Bandits [LWZC, ICML’2016] – Algorithm

- **C^3-UCB Algorithm**
 - Initialization: $\hat{\theta} = 0 \in \mathbb{R}^{d \times 1}$, $V = \lambda I \in \mathbb{R}^{d \times d}$, $b = 0 \in \mathbb{R}^{d \times 1}$
 - For time $t = 1, 2, \ldots$
 - Obtain items $\{x_t,a\}_{a \in E} \subset \mathbb{R}^{d \times 1}$
Contextual Combinatorial Cascading Bandits [LWZC, ICML’2016] – Algorithm

- \(C^3 \)-UCB Algorithm
 - Initialization: \(\hat{\theta} = 0 \in \mathbb{R}^{d \times 1}, V = \lambda I \in \mathbb{R}^{d \times d}, b = 0 \in \mathbb{R}^{d \times 1} \)
 - For time \(t = 1, 2, \ldots \)
 - Obtain items \(\{x_t,a\}_{a \in E} \subset \mathbb{R}^{d \times 1} \)
 - With high probability
 \[
 \left\| \hat{\theta} - \theta \right\|_V \leq \beta_t
 \]
 thus with high probability
 \[
 \alpha_t(a) \in \hat{\theta}^\top x_{t,a} \pm \beta_t \|x_{t,a}\|_{V^{-1}}
 \]
Contextual Combinatorial Cascading Bandits [LWZC, ICML’2016] – Algorithm

- **C³-UCB Algorithm**
 - Initialization: \(\hat{\theta} = 0 \in \mathbb{R}^{d \times 1}, V = \lambda I \in \mathbb{R}^{d \times d}, b = 0 \in \mathbb{R}^{d \times 1} \)
 - For time \(t = 1, 2, \ldots \)
 - Obtain items \(\{x_{t,a}\}_{a \in E} \subset \mathbb{R}^{d \times 1} \)
 - With high probability
 \[
 \|\hat{\theta} - \theta\|_V \leq \beta_t
 \]
 thus with high probability
 \[
 \alpha_t(a) \in \hat{\theta}^T x_{t,a} \pm \beta_t \|x_{t,a}\|_{V^{-1}}
 \]
 - Select the list \(A_t \) by UCBs of arms \(U_t(a) = \hat{\theta}^T x_{t,a} + \beta_t \|x_{t,a}\|_{V^{-1}} \)
Contextual Combinatorial Cascading Bandits [LWZC, ICML’2016] – Algorithm

- **C³-UCB Algorithm**
 - Initialization: \(\hat{\theta} = 0 \in \mathbb{R}^{d \times 1}, V = \lambda I \in \mathbb{R}^{d \times d}, b = 0 \in \mathbb{R}^{d \times 1} \)
 - For time \(t = 1, 2, \ldots \)
 - Obtain items \(\{x_{t,a}\}_{a \in E} \subset \mathbb{R}^{d \times 1} \)
 - With high probability
 \[
 \left\| \hat{\theta} - \theta \right\|_V \leq \beta_t
 \]
 thus with high probability
 \[
 \alpha_t(a) \in \hat{\theta}^\top x_{t,a} \pm \beta_t \|x_{t,a}\|_{V^{-1}}
 \]
 - Select the list \(A_t \) by UCBs of arms \(U_t(a) = \hat{\theta}^\top x_{t,a} + \beta_t \|x_{t,a}\|_{V^{-1}} \)
 - Receive feedback \(C_t \in \{0, 1\}^K \)
 - Compute the stopping position \(K_t = \min\{k : C_t(k) = 1\} \cup \{K\} \) and update
 \[
 V \leftarrow V + \sum_{k=1}^{K_t} x_{t,a_k} x_{t,a_k}^\top, \quad b \leftarrow b + \sum_{k=1}^{K_t} x_{t,a_k} C_t(k)
 \]
 \[
 \hat{\theta} = V^{-1} b
 \]
Contextual Combinatorial Cascading Bandits [LWZC, ICML ’2016] – Results

- We prove a regret bound

\[R(T) = O \left(\frac{d}{p^*} \sqrt{TK \ln(T)} \right) \]
Contextual Combinatorial Cascading Bandits [LWZC, ICML’2016] – Results

- We prove a regret bound

\[R(T) = O \left(\frac{d}{p^*} \sqrt{TK \ln(T)} \right) \]

- Experimental results

![Synthetic Data](image1)

![Network 1221](image2)
Summary on Bandits with Click Models

<table>
<thead>
<tr>
<th>Reference</th>
<th>Context</th>
<th>Click Model</th>
<th>Regret</th>
</tr>
</thead>
<tbody>
<tr>
<td>[KSWA, 2015]</td>
<td>-</td>
<td>CM</td>
<td>$O\left(\frac{L}{\Delta} \log(T)\right)$</td>
</tr>
<tr>
<td>[LWZC, ICML’2016]</td>
<td>Linear</td>
<td>CM</td>
<td>$O\left(\frac{d}{p^*} \sqrt{TK \log(T)}\right)$</td>
</tr>
</tbody>
</table>
Outline

1 Motivation

2 Background

3 Problem Definition – Online

4 Click Models
 - Cascade Model (CM)
 - ICML’2016
 - AAAI’2018
 - IJCAI’2019
 - Dependent Click Model – A co-authored work
 - Position-Based Model
 - General Click Models – A co-authored work, ICML’2019

5 Offline Evaluations – KDD’2018

6 Conclusions
Online Clustering of Contextual Cascading Bandits [LZ, AAAI’2018]

- Find clustering over users as well as recommending
- The attractiveness function is generalized linear (GL)
- Improve the regret results
- Experiments — Ours · · · C³-UCB

<table>
<thead>
<tr>
<th></th>
<th>Context</th>
<th>Click Model</th>
<th>Regret</th>
</tr>
</thead>
<tbody>
<tr>
<td>[KSWA, 2015]</td>
<td>-</td>
<td>CM</td>
<td>$O\left(\frac{L}{\Delta} \log(T)\right)$</td>
</tr>
<tr>
<td>[LWZC, ICML’2016]</td>
<td>Linear</td>
<td>CM</td>
<td>$O\left(\frac{d}{p^*} \sqrt{TK \log(T)}\right)$</td>
</tr>
<tr>
<td>[LZ, AAAI’2018]</td>
<td>GL</td>
<td>CM</td>
<td>$O(d \sqrt{TK \log(T)}$</td>
</tr>
</tbody>
</table>
Outline

1 Motivation
2 Background
3 Problem Definition – Online
4 Click Models
 - Cascade Model (CM)
 - ICML’2016
 - AAAI’2018
 - IJCAI’2019
 - Dependent Click Model – A co-authored work
 - Position-Based Model
 - General Click Models – A co-authored work, ICML’2019
5 Offline Evaluations – KDD’2018
6 Conclusions
Improved Algorithm on Clustering Bandits [LCLL, IJCAI’2019]

- Arbitrary frequency distribution over users (compared to uniform distribution)
- Prove a regret bound that is free of the minimal frequency over users

\[R(T) = O \left(d \sqrt{mT \ln(T)} + \left(\frac{1}{\gamma_p^2} + \frac{n_u}{\gamma^2 \lambda_x^3} \right) \ln(T) \right) \]

(compared to \(R(T) = O \left(d \sqrt{mT \ln(T)} + \frac{1}{p_{\min}\gamma^2 \lambda_x^3} \ln(T) \right) \))

where \(n_u \) is number of users and \(m \) is number of clusters
Arbitrary frequency distribution over users (compared to uniform distribution)

Prove a regret bound that is free of the minimal frequency over users

\[R(T) = O \left(d \sqrt{mT} \ln(T) + \left(\frac{1}{\gamma_p^2} + \frac{n_u}{\gamma^2 \lambda^3_x} \right) \ln(T) \right) \]

(compared to \(R(T) = O \left(d \sqrt{mT} \ln(T) + \frac{1}{p_{\min} \gamma^2 \lambda^3_x} \ln(T) \right) \))

where \(n_u \) is number of users and \(m \) is number of clusters

Experiments —Ours —CLUB —LinUCB-One —LinUCB-Ind
Contents

1 Motivation

2 Background

3 Problem Definition – Online

4 Click Models
 - Cascade Model (CM)
 - ICML’2016
 - AAAI’2018
 - IJCAI’2019
 - Dependent Click Model – A co-authored work
 - Position-Based Model
 - General Click Models – A co-authored work, ICML’2019

5 Offline Evaluations – KDD’2018

6 Conclusions
Dependent Click Model (DCM)

- Allow multiple clicks
- Assumes there is a probability of satisfaction after each click

\[r(A) = 1 - \prod_{k=1}^{K} (1 - \alpha(a_k) \gamma_k) \]

\(\gamma_k \): satisfaction probability after click on position \(k \)

The meaning of received feedback:

- (0, 1, 0, 1, 0): no click
- ✓ click, not satisfied
- ✓ click, satisfied?
Dependent Click Model (DCM)

- Allow multiple clicks
- Assumes there is a probability of satisfaction after each click
- \[r(A) = 1 - \prod_{k=1}^{K} (1 - \alpha(a_k) \gamma_k) \]
 - \(\gamma_k \): satisfaction probability after click on position \(k \)
Dependent Click Model (DCM)

- Allow multiple clicks
- Assumes there is a probability of satisfaction after each click
 \[r(A) = 1 - \prod_{k=1}^{K} (1 - \alpha(a_k) \gamma_k) \]
 \(\gamma_k \): satisfaction probability after click on position \(k \)
- The meaning of received feedback (0, 1, 0, 1, 0)
 - \(\checkmark \) no click
 - \(\checkmark \) click, not satisfied
 - \(\checkmark \) click, satisfied?
 - ?

Context Click Model Regret
- CM: \[O(\Delta \log(T)) \]
- Linear CM: \[O(d_p \sqrt{TK} \log(T)) \]
- GL CM: \[O(d \sqrt{TK} \log(T)) \]
- DCM: \[O(\Delta \log(T)) \]
- GL DCM: \[O(dK \sqrt{TK} \log(T)) \]

Shuai LI (CUHK)
Dependent Click Model (DCM)

- Allow multiple clicks
- Assumes there is a probability of satisfaction after each click
- \[r(A) = 1 - \prod_{k=1}^{K} (1 - \alpha(a_k) \gamma_k) \]
 - \(\gamma_k \): satisfaction probability after click on position \(k \)
- The meaning of received feedback \((0, 1, 0, 1, 0)\)

<table>
<thead>
<tr>
<th>Context</th>
<th>Click Model</th>
<th>Regret</th>
</tr>
</thead>
<tbody>
<tr>
<td>[KSWA, 2015]</td>
<td>CM</td>
<td>(O(\frac{L}{\Delta} \log(T)))</td>
</tr>
<tr>
<td>[LWZC, ICML’2016]</td>
<td>Linear CM</td>
<td>(O(\frac{d}{p^*} \sqrt{TK} \log(T)))</td>
</tr>
<tr>
<td>[LZ, AAAI’2018]</td>
<td>GL CM</td>
<td>(O(d \sqrt{TK} \log(T)))</td>
</tr>
<tr>
<td>[KKSW, 2016]</td>
<td>- DCM</td>
<td>(O(\frac{L}{\Delta} \log(T)))</td>
</tr>
<tr>
<td>[LLZ, COCOON’2018]</td>
<td>GL DCM</td>
<td>(O(dK \sqrt{TK} \log(T)))</td>
</tr>
</tbody>
</table>
Contents

1 Motivation
2 Background
3 Problem Definition – Online
4 Click Models
 • Cascade Model (CM)
 • ICML’2016
 • AAAI’2018
 • IJCAI’2019
 • Dependent Click Model – A co-authored work
 • Position-Based Model
 • General Click Models – A co-authored work, ICML’2019
5 Offline Evaluations – KDD’2018
6 Conclusions
Position-Based Model (PBM)

- Most popular model in industry

\[\beta_k \cdot \alpha(a) \]

\[r(A) = \sum_{k=1}^{K} \beta_k \alpha(a_k) \]

The meaning of received feedback (0, 1, 0, 1, 0)
Position-Based Model (PBM)

- Most popular model in industry
- Assumes the user click probability on an item \(a\) of position \(k\) can be factored into \(\beta_k \cdot \alpha(a)\)
Position-Based Model (PBM)

- Most popular model in industry
- Assumes the user click probability on an item \(a \) of position \(k \) can be factored into \(\beta_k \cdot \alpha(a) \)
- \(\beta_k \) is position bias. Usually \(\beta_1 \geq \beta_2 \geq \cdots \geq \beta_K \)

![Graph showing CTR for different positions and device types]
Position-Based Model (PBM)

- Most popular model in industry
- Assumes the user click probability on an item \(a \) of position \(k \) can be factored into \(\beta_k \cdot \alpha(a) \)
- \(\beta_k \) is position bias. Usually \(\beta_1 \geq \beta_2 \geq \cdots \geq \beta_K \)

\[
r(A) = \sum_{k=1}^{K} \beta_k \alpha(a_k)
\]
Position-Based Model (PBM)

- Most popular model in industry
- Assumes the user click probability on an item a of position k can be factored into $\beta_k \cdot \alpha(a)$
- β_k is position bias. Usually $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_K$

$$r(A) = \sum_{k=1}^{K} \beta_k \alpha(a_k)$$
- The meaning of received feedback $(0, 1, 0, 1, 0)$
Summary on Bandits with Click Models

<table>
<thead>
<tr>
<th>Reference</th>
<th>Context</th>
<th>Click Model</th>
<th>Regret</th>
</tr>
</thead>
<tbody>
<tr>
<td>[KSWA, 2015]</td>
<td>-</td>
<td>CM</td>
<td>$O\left(\frac{L}{\Delta} \log(T)\right)$</td>
</tr>
<tr>
<td>[LWZC, ICML '2016]</td>
<td>Linear</td>
<td>CM</td>
<td>$O\left(\frac{d}{p^*} \sqrt{TK} \log(T)\right)$</td>
</tr>
<tr>
<td>[LZ, AAAI'2018]</td>
<td>GL</td>
<td>CM</td>
<td>$O(d \sqrt{TK} \log(T))$</td>
</tr>
<tr>
<td>[KKSW, 2016]</td>
<td>-</td>
<td>DCM</td>
<td>$O\left(\frac{L}{\Delta} \log(T)\right)$</td>
</tr>
<tr>
<td>[LLZ, COCOON'2018]</td>
<td>GL</td>
<td>DCM</td>
<td>$O(dK \sqrt{TK} \log(T))$</td>
</tr>
<tr>
<td>[LVC, 2016]</td>
<td>-</td>
<td>PBM with β</td>
<td>$O\left(\frac{L}{\Delta} \log(T)\right)$</td>
</tr>
</tbody>
</table>
Contents

1 Motivation

2 Background

3 Problem Definition – Online

4 Click Models
 - Cascade Model (CM)
 - ICML’2016
 - AAAI’2018
 - IJCAI’2019
 - Dependent Click Model – A co-authored work
 - Position-Based Model
 - General Click Models – A co-authored work, ICML’2019

5 Offline Evaluations – KDD’2018

6 Conclusions
General Click Models

- Common observations for click models
 - The click-through-rate (CTR) of list A on position k can be factored into

 $$\text{CTR}(A, k) = \chi(A, k) \alpha(a_k)$$

 $\chi(A, k)$ is the examination probability of list A on position k
General Click Models

- Common observations for click models
 - The click-through-rate (CTR) of list A on position k can be factored into

 \[
 \text{CTR}(A, k) = \chi(A, k) \alpha(a_k)
 \]

 $\chi(A, k)$ is the examination probability of list A on position k
 - E.g. $\chi(A, k) = \prod_{i=1}^{k-1} (1 - \alpha(a_i))$ in Cascade Model and $\chi(A, k) = \beta_k$ in Position Based Model
General Click Models

- **Common observations for click models**
 - The click-through-rate (CTR) of list A on position k can be factored into

 \[
 \text{CTR}(A, k) = \chi(A, k) \alpha(a_k)
 \]

 $\chi(A, k)$ is the examination probability of list A on position k
 - E.g. $\chi(A, k) = \prod_{i=1}^{k-1} (1 - \alpha(a_i))$ in Cascade Model and $\chi(A, k) = \beta_k$ in Position Based Model

- **Difficulties on General Click Models**
 - χ depends on both click models and lists
Summary on Bandits with Click Models

<table>
<thead>
<tr>
<th></th>
<th>Context</th>
<th>Click Model</th>
<th>Regret</th>
</tr>
</thead>
<tbody>
<tr>
<td>[KSWA, 2015]</td>
<td>-</td>
<td>CM</td>
<td>$O\left(\frac{L}{\Delta} \log(T)\right)$</td>
</tr>
<tr>
<td>[LWZC, ICML’2016]</td>
<td>Linear</td>
<td>CM</td>
<td>$O\left(\frac{d}{\rho^*} \sqrt{TK \log(T)}\right)$</td>
</tr>
<tr>
<td>[LZ, AAAI’2018]</td>
<td>GL</td>
<td>CM</td>
<td>$O(d \sqrt{TK \log(T)})$</td>
</tr>
<tr>
<td>[KKSW, 2016]</td>
<td>-</td>
<td>DCM</td>
<td>$O\left(\frac{L}{\Delta} \log(T)\right)$</td>
</tr>
<tr>
<td>[LLZ, COCOON’2018]</td>
<td>GL</td>
<td>DCM</td>
<td>$O(dK \sqrt{TK \log(T)})$</td>
</tr>
<tr>
<td>[LVC, 2016]</td>
<td>-</td>
<td>PBM with β</td>
<td>$O\left(\frac{L}{\Delta} \log(T)\right)$</td>
</tr>
<tr>
<td>[ZTGKSW, 2017]</td>
<td>-</td>
<td>General</td>
<td>$O\left(\frac{K^3L}{\Delta} \log(T)\right)$</td>
</tr>
<tr>
<td>[LKLS, NIPS’2018]</td>
<td>-</td>
<td>General</td>
<td>$O\left(\frac{KL}{\Delta} \log(T)\right)$
$O\left(\sqrt{K^3LT \log(T)}\right)$
$\Omega\left(\sqrt{KLT}\right)$</td>
</tr>
</tbody>
</table>
Recall

- Each item a is represented by a feature vector $x_a \in \mathbb{R}^d$
- The attractiveness of item a is $\alpha(a) = \theta^\top x_a$
Online Learning to Rank with Features [LLS, ICML’2019] – Preparation

Recall

- Each item a is represented by a feature vector $x_a \in \mathbb{R}^d$
- The attractiveness of item a is $\alpha(a) = \theta^\top x_a$

We bring up an algorithm called RecurRank (Recursive Ranking)
Online Learning to Rank with Features [LLS, ICML’2019] – Preparation

Recall

- Each item \(a \) is represented by a feature vector \(x_a \in \mathbb{R}^d \)
- The attractiveness of item \(a \) is \(\alpha(a) = \theta^\top x_a \)

We bring up an algorithm called RecurRank (Recursive Ranking)

- G-optimal design
 - Minimize the covariance of the least-squares estimator
Online Learning to Rank with Features [LLS, ICML’2019] – Preparation

Recall

- Each item a is represented by a feature vector $x_a \in \mathbb{R}^d$
- The attractiveness of item a is $\alpha(a) = \theta^\top x_a$

We bring up an algorithm called **RecurRank** (Recursive Ranking)

- **G-optimal design**
 - Minimize the covariance of the least-squares estimator
 - $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$
Recall

- Each item a is represented by a feature vector $x_a \in \mathbb{R}^d$
- The attractiveness of item a is $\alpha(a) = \theta^\top x_a$

We bring up an algorithm called **RecurRank** (Recursive Ranking)

- G-optimal design
 - Minimize the covariance of the least-squares estimator
 - $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$
 - For any distribution $\pi : X \rightarrow [0, 1]$, let $Q(\pi) = \sum_{x \in X} \pi(x) xx^\top$
Online Learning to Rank with Features [LLS, ICML’2019] – Preparation

Recall

- Each item a is represented by a feature vector $x_a \in \mathbb{R}^d$
- The attractiveness of item a is $\alpha(a) = \theta^\top x_a$

We bring up an algorithm called RecurRank (Recursive Ranking)

- G-optimal design
 - Minimize the covariance of the least-squares estimator
 - $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$
 - For any distribution $\pi : X \rightarrow [0, 1]$, let $Q(\pi) = \sum_{x \in X} \pi(x) xx^\top$
 - By the Kiefer–Wolfowitz theorem there exists a π called the G-optimal design such that

$$\max \det(Q(\pi)) \text{ or equivalently } \max_{x \in X} \|x\|_2^2 Q(\pi)^\dagger \leq d$$
Each item a is represented by a feature vector $x_a \in \mathbb{R}^d$

- The attractiveness of item a is $\alpha(a) = \theta^\top x_a$

We bring up an algorithm called *RecurRank* (Recursive Ranking)

- G-optimal design:
 - Minimize the covariance of the least-squares estimator
 - $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$
 - For any distribution $\pi : X \to [0, 1]$, let $Q(\pi) = \sum_{x \in X} \pi(x)xx^\top$
 - By the Kiefer–Wolfowitz theorem there exists a π called the G-optimal design such that
 \[
 \max \det(Q(\pi)) \text{ or equivalently } \max_{x \in X} \|x\|^2_{Q(\pi)^\dagger} \leq d
 \]

 - John’s theorem implies that π may be chosen so that
 \[|\{x : \pi(x) > 0\}| \leq d(d + 3)/2\]
Online Learning to Rank with Features [LLS, ICML’2019] – Algorithm

- RecurRank Algorithm

Each instantiation is called with three arguments:
1. A phase number $\ell \in \{1, 2, ..., \}
2. An ordered tuple of items $A = (a_1, a_2, ..., a_n);
3. A tuple of positions $K = (k, ..., k+m-1)$ and $m \leq n$.

The algorithm is first called with $\ell = 1$, a random order over all items $\{1, ..., L\}$, and $K = (1, ..., K)$.

Find a G-optimal design $\pi = G^{opt}(A)$. Then compute $T(a) = \lceil d_{\pi}(a) \cdot 2\Delta\log(|A|/\delta\ell) \rceil$, $\Delta\ell = 2^{-\ell}$.

Hope to satisfy $|\alpha(a) - \hat{\alpha}(a)| \leq \Delta\ell$ for any $a \in A$ by the end of this instantiation.

This instantiation runs for $\sum_{a \in A} T(a)$ times.
RecurRank Algorithm

Each instantiation is called with three arguments:

1. A phase number $\ell \in \{1, 2, \ldots\}$;
2. An ordered tuple of items $A = (a_1, a_2, \ldots, a_n)$;
3. A tuple of positions $K = (k, \ldots, k + m - 1)$ and $m \leq n$.

Hope to satisfy $|\alpha(a) - \hat{\alpha}(a)| \leq \Delta$ for any $a \in A$ by the end of this instantiation.
RecurRank Algorithm

Each instantiation is called with three arguments:

1. A phase number $\ell \in \{1, 2, \ldots\}$;
2. An ordered tuple of items $A = (a_1, a_2, \ldots, a_n)$;
3. A tuple of positions $K = (k, \ldots, k + m - 1)$ and $m \leq n$.

The algorithm is first called with $\ell = 1$, a random order over all items $\{1, \ldots, L\}$, and $K = (1, \ldots, K)$.

Find a G-optimal design $\pi = G_{opt}(A)$. Then compute $T(a) = \lceil d_{\pi}(a) 2\Delta^2 \ell \log(|A| \delta_\ell) \rceil$, $\Delta_\ell = 2^{1 - \ell}$.

Hope to satisfy $|\alpha(a) - \hat{\alpha}(a)| \leq \Delta_\ell$ for any $a \in A$ by the end of this instantiation. This instantiation runs for $\sum_{a \in A} T(a)$ times.
RecurRank Algorithm

Each instantiation is called with three arguments:
1. A phase number $\ell \in \{1, 2, \ldots\}$;
2. An ordered tuple of items $A = (a_1, a_2, \ldots, a_n)$;
3. A tuple of positions $K = (k, \ldots, k + m - 1)$ and $m \leq n$.

The algorithm is first called with $\ell = 1$, a random order over all items $\{1, \ldots, L\}$, and $K = (1, \ldots, K)$.

Find a G-optimal design $\pi = \text{GOPT}(A)$. Then compute

$$T(a) = \left\lceil \frac{d \pi(a)}{2\Delta_\ell^2} \log \left(\frac{|A|}{\delta_\ell} \right) \right\rceil, \quad \Delta_\ell = 2^{-\ell}$$
RecurRank Algorithm

- Each instantiation is called with three arguments:
 1. A phase number \(\ell \in \{1, 2, \ldots\} \);
 2. An ordered tuple of items \(\mathcal{A} = (a_1, a_2, \ldots, a_n) \);
 3. A tuple of positions \(\mathcal{K} = (k, \ldots, k + m - 1) \) and \(m \leq n \).

- The algorithm is first called with \(\ell = 1 \), a random order over all items \(\{1, \ldots, L\} \), and \(\mathcal{K} = (1, \ldots, K) \).

- Find a \(G \)-optimal design \(\pi = G_{\text{OPT}}(\mathcal{A}) \). Then compute

\[
T(a) = \left\lceil \frac{d \pi(a)}{2 \Delta^2_{\ell}} \log \left(\frac{|\mathcal{A}|}{\delta_{\ell}} \right) \right\rceil, \quad \Delta_{\ell} = 2^{-\ell}
\]

Hope to satisfy \(|\alpha(a) - \hat{\alpha}(a)| \leq \Delta_{\ell} \) for any \(a \in \mathcal{A} \) by the end of this instantiation.
RecurRank Algorithm

Each instantiation is called with three arguments:

1. A phase number \(\ell \in \{1, 2, \ldots \} \);
2. An ordered tuple of items \(A = (a_1, a_2, \ldots, a_n) \);
3. A tuple of positions \(K = (k, \ldots, k + m - 1) \) and \(m \leq n \).

The algorithm is first called with \(\ell = 1 \), a random order over all items \(\{1, \ldots, L\} \), and \(K = (1, \ldots, K) \).

Find a \(G \)-optimal design \(\pi = G_{\text{OPT}}(A) \). Then compute

\[
T(a) = \left\lceil \frac{d \pi(a)}{2 \Delta_{\ell}^2} \log \left(\frac{|A|}{\delta_{\ell}} \right) \right\rceil, \quad \Delta_{\ell} = 2^{-\ell}
\]

Hope to satisfy \(|\alpha(a) - \hat{\alpha}(a)| \leq \Delta_{\ell} \) for any \(a \in A \) by the end of this instantiation.

This instantiation runs for \(\sum_{a \in A} T(a) \) times.
RecurRank Algorithm (Continued)

Select each item $a \in \mathcal{A}$ exactly $T(a)$ times at position k and put the first $m - 1$ items in $\mathcal{A} \setminus \{a\}$ at remaining positions $\{k + 1, \ldots, k + m - 1\}$

- first position — exploration
- remaining positions — exploitation

Only first position has the same examination probability χ for all lists.
RecurRank Algorithm (Continued)

- Select each item \(a \in \mathcal{A} \) exactly \(T(a) \) times at position \(k \) and put the first \(m - 1 \) items in \(\mathcal{A} \setminus \{a\} \) at remaining positions \(\{k + 1, \ldots, k + m - 1\} \)
- first position — exploration
- remaining positions — exploitation
- only first position has the same examination probability \(\chi \) for all lists

E.g. Suppose we have computed \(T(a_3) = 100 \), then it puts \((a_3, a_1, a_2, a_4, \ldots, a_m)\) on positions \((k, \ldots, k + m - 1)\) for 100 rounds
RecurRank Algorithm (Continued)

- Select each item $a \in \mathcal{A}$ exactly $T(a)$ times at position k and put the first $m - 1$ items in $\mathcal{A} \setminus \{a\}$ at remaining positions $\{k + 1, \ldots, k + m - 1\}$
- First position — exploration
- Remaining positions — exploitation
- Only first position has the same examination probability χ for all lists

E.g. Suppose we have computed $T(a_3) = 100$, then it puts $(a_3, a_1, a_2, a_4, \ldots, a_m)$ on positions $(k, \ldots, k + m - 1)$ for 100 rounds

- Compute $\hat{\theta}$ only using the feedbacks from first position k and rank items in decreasing order of the estimated attractiveness

$$\hat{\alpha}(\hat{a}_1) \geq \hat{\alpha}(\hat{a}_2) \geq \hat{\alpha}(\hat{a}_3) \geq \cdots \geq \hat{\alpha}(\hat{a}_n)$$
RecurRank Algorithm (Continued)

Eliminate bad arms $\hat{a}_{n'+1}, \ldots, \hat{a}_n$ if

$$\hat{\alpha}(\hat{a}_1) \geq \cdots \geq \hat{\alpha}(\hat{a}_m) \geq \cdots \geq \hat{\alpha}(\hat{a}_{n'}) \geq \hat{\alpha}(\hat{a}_{n'+1}) \geq \cdots \geq \hat{\alpha}(\hat{a}_n)$$

\[\text{gap} \geq 2\Delta \ell\]
RecurRank Algorithm (Continued)

Eliminate bad arms $\hat{a}_{n'+1}, \ldots, \hat{a}_n$ if

$$\hat{\alpha}(\hat{a}_1) \geq \cdots \geq \hat{\alpha}(\hat{a}_m) \geq \cdots \geq \hat{\alpha}(\hat{a}_{n'}) \geq \hat{\alpha}(\hat{a}_{n'+1}) \geq \cdots \geq \hat{\alpha}(\hat{a}_n)$$

where $\text{gap} \geq 2\Delta \ell$

Split the partition for each consecutive gap larger than $2\Delta \ell$

$$\hat{\alpha}(\hat{a}_1) \geq \cdots \geq \hat{\alpha}(\hat{a}_{k_1}) \quad | \quad \hat{\alpha}(\hat{a}_{k_1+1}) \geq \cdots \geq \hat{\alpha}(\hat{a}_{k_2}) \quad | \quad \hat{\alpha}(\hat{a}_{k_2+1}) \geq \cdots \geq \hat{\alpha}(\hat{a}_{n'})$$

where $\text{gap} \geq 2\Delta \ell$ and $k, \ldots, k + k_1 - 1 \quad | \quad k + k_1, \ldots, k + k_2 - 1 \quad | \quad k + k_2, \ldots, k + m - 1$
RecurRank Algorithm (Continued)

Eliminate bad arms \(\hat{a}_{n'+1}, \ldots, \hat{a}_n \) if

\[
\hat{\alpha}(\hat{a}_1) \geq \cdots \geq \hat{\alpha}(\hat{a}_m) \geq \cdots \geq \hat{\alpha}(\hat{a}_{n'}) \geq \hat{\alpha}(\hat{a}_{n'+1}) \geq \cdots \geq \hat{\alpha}(\hat{a}_n)
\]

\[\text{gap} \geq 2\Delta \ell\]

Split the partition for each consecutive gap larger than \(2\Delta \ell \)

\[
\hat{\alpha}(\hat{a}_1) \geq \cdots \geq \hat{\alpha}(\hat{a}_{k_1}) \quad \hat{\alpha}(\hat{a}_{k_1+1}) \geq \cdots \geq \hat{\alpha}(\hat{a}_{k_2}) \quad \hat{\alpha}(\hat{a}_{k_2+1}) \geq \cdots \geq \hat{\alpha}(\hat{a}_{n'})
\]

\[\text{gap} \geq 2\Delta \ell, \quad \text{gap} \geq 2\Delta \ell\]

\[k, \cdots, k + k_1 - 1 \quad k + k_1, \cdots, k + k_2 - 1 \quad k + k_2, \cdots, k + m - 1\]

Call the refined partitions with phase \(\ell + 1 \)
Online Learning to Rank with Features [LLS, ICML’2019] – Results

- Regret bound

\[R(T) = O(K \sqrt{dT \log(LT)}) \]
Online Learning to Rank with Features [LLS, ICML’2019] – Results

- Regret bound

\[R(T) = O(K \sqrt{dT \log(LT)}) \]

- Experiments

 - RecurRank (Ours)
 - C³-UCB
 - TopRank

![Regret plots](image)
Summary on Bandits with Click Models

<table>
<thead>
<tr>
<th>Reference</th>
<th>Context</th>
<th>Click Model</th>
<th>Regret</th>
</tr>
</thead>
<tbody>
<tr>
<td>[KSWA, 2015]</td>
<td>-</td>
<td>CM</td>
<td>$O\left(\frac{L}{\Delta} \log(T)\right)$</td>
</tr>
<tr>
<td>[LWZC, ICML’2016]</td>
<td>Linear</td>
<td>CM</td>
<td>$O\left(\frac{d}{p^*} \sqrt{TK \log(T)}\right)$</td>
</tr>
<tr>
<td>[LZ, AAAI’2018]</td>
<td>GL</td>
<td>CM</td>
<td>$O\left(d \sqrt{TK \log(T)}\right)$</td>
</tr>
<tr>
<td>[KKSW, 2016]</td>
<td>-</td>
<td>DCM</td>
<td>$O\left(\frac{L}{\Delta} \log(T)\right)$</td>
</tr>
<tr>
<td>[LLZ, COCOON’2018]</td>
<td>GL</td>
<td>DCM</td>
<td>$O\left(dK \sqrt{TK \log(T)}\right)$</td>
</tr>
<tr>
<td>[LVC, 2016]</td>
<td>-</td>
<td>PBM with β</td>
<td>$O\left(\frac{L}{\Delta} \log(T)\right)$</td>
</tr>
<tr>
<td>[ZTGKSW, 2017]</td>
<td>-</td>
<td>General</td>
<td>$O\left(\frac{K^3L}{\Delta} \log(T)\right)$</td>
</tr>
<tr>
<td>[LKLS, NIPS’2018]</td>
<td>-</td>
<td>General</td>
<td>$O\left(\frac{K^3L}{\Delta} \log(T)\right)$, $O\left(\sqrt{K^3L^3T \log(T)}\right)$, $\Omega\left(\sqrt{KLT}\right)$</td>
</tr>
<tr>
<td>[LLS, ICML’2019]</td>
<td>Linear</td>
<td>General</td>
<td>$O\left(K \sqrt{dT \log(LT)}\right)$</td>
</tr>
</tbody>
</table>
Motivation

Can we estimate the expected number of clicks of new policies without directly employing it?
Motivation

- Can we estimate the expected number of clicks of new policies without directly employing it?

Offline Evaluation!
Offline Evaluations

Motivation
- Can we estimate the expected number of clicks of new policies without directly employing it?

Offline Evaluation!

Objective:
- To design statistically efficient estimators based on logged dataset for any ranking policy
Motivation
- Can we estimate the expected number of clicks of new policies without directly employing it?

Offline Evaluation!

Objective:
- To design statistically efficient estimators based on logged dataset for any ranking policy

Challenge:
- The number of different lists is exponential in K
We design estimators for different click models
- Item-Position, Random, Rank-Based, Position-Based, Document-Based
Offline Evaluation of Ranking Policies with Click Models
[LAKMVW, KDD’2018]– Results

- We design estimators for different click models
 - Item-Position, Random, Rank-Based, Position-Based, Document-Based
- We prove that our estimators
 - are unbiased in a larger class of policies
 - have lower bias
 - the best policy have better theoretical guarantees

than the existing unstructured estimators under the corresponding click model assumptions
Experiments – 100 most frequent queries in Yandex dataset

(a) 100 Queries: K = 2

(b) 100 Queries: K = 3

100 Queries: K = 10
Outline

1. Motivation
2. Background
3. Problem Definition – Online
4. Click Models
 - Cascade Model (CM)
 - ICML’2016
 - AAAI’2018
 - IJCAI’2019
 - Dependent Click Model – A co-authored work
 - Position-Based Model
 - General Click Models – A co-authored work, ICML’2019
5. Offline Evaluations – KDD’2018
6. Conclusions
Conclusions

- Context + Cascade model (CM) / Dependent click model (DCM)
- Online clustering of bandits + Cascade model (CM)
- Improved algorithm on clustering of bandits
- Context + General click model
- Offline evaluation of ranking policies with click models
First-author papers in thesis – in the order of thesis

2. Shuai Li, Shengyu Zhang, *Online Clustering of Contextual Cascading Bandits*, AAAI, 2018

3. Shuai Li, Wei Chen, S Li, Kwong-Sak Leung, *Improved Algorithm on Clustering of Bandits*, IJCAI 2019

4. Shuai Li, Tor Lattimore, Csaba Szepesvari, *Online Learning to Rank with Features*, ICML, 2019

5. Shuai Li, Yasin Abbasi-Yadkori, Branislav Kveton, S. Muthukrishnan, Vishwa Vinay and Zheng Wen, *Offline Evaluation of Ranking Policies with Click Models*, KDD, 2018
Publications

Mentioned co-authored papers

6. Weiwen Liu, Shuai Li, Shengyu Zhang, Contextual Dependent Click Bandit Algorithm for Web Recommendation, COCOON, 2018

7. Tor Lattimore, Branislav Kveton, Shuai Li, Csaba Szepesvari, TopRank: A Practical Algorithm for Online Stochastic Ranking, NeurIPS, 2018

Other co-authored papers

9. Ran Wang, Shuai Li, Man-Hon Wong, and Kwong-Sak Leung, Drug-Protein-Disease Association Prediction and Drug Repositioning Based on Tensor Decomposition, BIBM, 2018

Publications

In submission

11 Shuai Li, Wei Chen, Zheng Wen, Kwong-Sak Leung, *Stochastic Online Learning with Probabilistic Feedback Graph*

12 Shuai Li, Kwong-Sak Leung, *Generalized Clustering Bandits*

13 Shuai Li, Tong Yu, Ole Mengshoel, Kwong-Sak Leung, *Online Semi-Supervised Learning with Large Margin Separation*

14 Xiaojin Zhang, Shuai Li, Shengyu Zhang, *Contextual Combinatorial Conservative Bandits*

15 Pengfei Liu, Shuai Li, Kwong-Sak Leung, *The Recovery of Stochastic Differential Equations with Genetic Programming and Kullback-Leibler Divergence*
Thank you!

&

Questions?
P. Auer, N. Cesa-Bianchi, and P. Fischer.
Finite-time analysis of the multiarmed bandit problem.

Dcm bandits: Learning to rank with multiple clicks.

B. Kveton, C. Szepesvari, Z. Wen, and A. Ashkan.
Cascading bandits: Learning to rank in the cascade model.
P. Lagrée, C. Vernade, and O. Cappe.
Multiple-play bandits in the position-based model.

T. Lattimore, B. Kveton, Li, Shuai, and C. Szepesvari.
Toprank: A practical algorithm for online stochastic ranking.

Contextual dependent click bandit algorithm for web recommendation.

A Key Part Proof for CLUB-cascade (Improving C³-UCB)

\(\mathbb{E}_t[R(A_t, y_t)] \)

\[= \mathbb{E}_t \left[\left(1 - \prod_{k=1}^K (1 - y_t(x^*_t, k)) \right) - \left(1 - \prod_{k=1}^K (1 - y_t(x_t, k)) \right) \right] \]

\[= \mathbb{E}_t \left[\prod_{k=1}^K (1 - y_t(x_t, k)) - \prod_{k=1}^K (1 - y_t(x^*_t, k)) \right] \]

\[= \mathbb{E}_t \left[\sum_{k=1}^K \left(\prod_{\ell=1}^{k-1} (1 - y_t(x_t, \ell)) \right) \left[(1 - y_t(x_t, k)) - (1 - y_t(x^*_t, k)) \right] \left(\prod_{\ell=k+1}^K (1 - y_t(x^*_t, \ell)) \right) \right] \]

\[\leq \mathbb{E}_t \left[\sum_{k=1}^K \left(\prod_{\ell=1}^{k-1} (1 - y_t(x_t, \ell)) \right) \left[y_t(x^*_t, k) - y_t(x_t, k) \right] \right] \]

\[= \mathbb{E}_t \left[\sum_{k=1}^{K_t} [y_t(x^*_t, k) - y_t(x_t, k)] \right] \]
Proof Sketch for RecurRank

- Use \((\ell, i)\) to represent the \(i\)-th call of RecurRank with \(\ell, A_{\ell i}, K_{\ell i}\)
Use \((\ell, i)\) to represent the \(i\)-th call of RecurRank with \(\ell, A_{\ell i}, K_{\ell i}\).

Prove with high probability for any \((\ell, i)\)

- \(a_k^* \in A_{\ell i}\) if \(k \in K_{\ell i}\)
- \(|\hat{\theta}_{\ell i}^T x_a - \chi_{\ell i} \theta_*^T x_a| \leq \Delta_{\ell i}\), where \(\chi_{\ell i}\) is the examination probability of the optimal list on the first position in \(K_{\ell i}\)
Proof Sketch for RecurRank

- Use \((\ell, i)\) to represent the \(i\)-th call of RecurRank with \(\ell, A_{\ell i}, K_{\ell i}\).
- Prove with high probability for any \((\ell, i)\)
 - \(a_k^* \in A_{\ell i}\) if \(k \in K_{\ell i}\)
 - \(|\hat{\theta}_{\ell i}^T x_a - \chi_{\ell i} \theta_*^T x_a| \leq \Delta_{\ell}\), where \(\chi_{\ell i}\) is the examination probability of the optimal list on the first position in \(K_{\ell i}\).
- In \((\ell, i)\)th call, item \(a\) is put at position \(k\), then
 - \(\chi_{\ell i} (\alpha(a_k^*) - \alpha(a)) \leq 8|K_{\ell i}|\Delta_{\ell}\) if \(k\) is the first position in \(K_{\ell i}\)
 - \(\chi_{\ell i} (\alpha(a_k^*) - \alpha(a)) \leq 4\Delta_{\ell}\) if \(k\) is the remaining position
 - thus \(O(|K_{\ell i}|\Delta_{\ell})\) regret for this part.