name | office hour | ||
---|---|---|---|
Instructor | Shuai Li | shuaili8@sjtu.edu.cn | Tue 10:00-11:00 Rm 1406-2, Software College |
TA | Jingying Wang | wjymonica@sjtu.edu.cn | Mon 20:00-21:00 326G, JI Building |
Lecture times
Recitation time Mon 18:00-19:40 at F103
Grading Your grade will be determined from a final exam (35%), a midterm exam (25%), a project (20%), and labs/homeworks (20%).
References
week | date | topic | materials |
---|---|---|---|
1 | Sep 10 | 1 Introduction | |
Sep 12 | 2 Basics | ||
2 | Sep 17 | 3 Linear Regression | |
3 | Sep 19 Sep 24 | 4 Logistic Regression | |
Sep 26 | 5 SVM | ||
Sep 27 | Practice: Python | ||
4 | Oct 1 Oct 3 | National Day Holiday | |
5 | Oct 8 | 5 SVM (cont.) | |
Oct 10 Oct 11 | 6 Neural Networks | pdf demo | |
6 | Oct 15 Oct 17 | 7 Convolutional Neural Networks | |
7 | Oct 22 | 8 Recurrent Neural Networks | pdf demo |
Oct 24 | 9 Decision Tree | ||
Oct 25 | Review for the Midterm | ||
8 | Oct 29 | Midterm Exam | |
Oct 31 | 9 Decision Tree (cont.) | ||
9 | Nov 5 | China International Import Expo | |
Nov 7 Nov 8 | 10 Clustering | ||
10 | Nov 9 Nov 12 | 11 Dimensionality Reduction | |
Nov 14 | Guest Lecture: Recommendation Systems | ||
11 | Nov 19 Nov 21 | 11 Dimensionality Reduction (cont.) | |
12 | Nov 22 Nov 26 | 12 Gaussian Mixture Models | |
Nov 28 | 13 Hidden Markov Models | ||
13 | Dec 3 | HMM, Review for the Final | |
Dec 5 | Review for the Final | ||
Dec 6 | Final Exam |